Skip to main content
GrowersHelp your business growResearch reports, publications, fact sheets and more Maximising yield and reducing seasonal variation (AV16005)
Ongoing project

Maximising yield and reducing seasonal variation (AV16005)

Key research provider: CSIRO

What’s it all about?

This project is developing the knowledge and tools needed to manipulate and maximise avocado tree yields, to help improve production and profitability in the industry.

Specifically, the project is looking at resource competition between shoots and fruits, potentially opening the door for new methods of reducing fruit drop. Because vegetative shoot growth coincides with fruit development in avocado trees, competition exists for carbohydrates, other nutrients and hormones necessary for maintaining growth. This competition can impact on the early stages of fruit development, resulting in fruit growth cessation followed by abscission – a key event that limits avocado production.

The research is also looking at how high, sustainable production can be achieved from year to year, through progressing the understanding of high-yielding tree development.

The research team has expanded its understanding of how avocado trees adjust crop load depending on the tree’s carbohydrate and nutrient levels. There is strong evidence to show that the carbohydrate status of the tree is critical to maintaining productivity.

The physiology of fruit drop was examined by measuring carbohydrate levels in stems and fruits. Results showed defoliation (leaf loss) led to a significant reduction in stored and soluble carbohydrates in the tree stem and seed coat. Low carbohydrate levels in the tree correlate with high abscission (fruit drop).

The seed coat also appears to play a fundamental role in regulating fruit growth and drop. Results showed that soluble carbohydrates are rapidly reduced in this tissue in response to defoliation.

These insights show managing fruitlet drop is key for increasing production. The team continue to focus research efforts on investigating fruit abscission, given its recent progress in this area, with the potential for crop management techniques to be developed in light of this research.

The project team has shed light on two factors that play a role in fruitlet abscission: carbon stores and water stress.

Carbon stores

To determine the role that carbon levels play in fruitlet drop, the researchers removed new vegetative growth from avocado trees and found that this induced a significant fruit drop event. As well as confirming the part that low tree carbon stores play, this ability to bring about fruit abscission will be useful in future trials.

Next steps are to learn more about the physiological changes in a tree that control fruit growth cessation, seed coat senescence and fruit abscission, so the project team is collecting fruit and shoot tissues at particular points in both treated and control trees for further analysis and comparison.

Once identified, these pathways will be incorporated into a model, which will serve as a knowledge base platform for developing new management tools to limit fruit abscission.

Water stress

The experiments also showed demonstrated the impact of water deficit on fruit abscission. The researchers found that in drought stress, fruit abscission doesn’t occur until trees are in severe water deficit and that fruit abscission is reversible in severe water stressed trees, which may prove useful in reducing fruitlet drop in the field.  

The field trial at Waikerie, SA, was completed, with the aim to develop a method to increase stored starch reserves in the trees during the winter months, but results will need to be repeated, as the trees in the trial were in an off-year with low crop load. The second year trial has begun, and the trees are carrying a significant crop so data on the effect of cytokinin applications on stored carbohydrates and yield should be forthcoming.

The team is continuing trials to establish the effect of heavy flowering on fruit set, as well as comparing rootstocks.

The project team report that experimental studies indicate that early fruit drop (fruitlet abscission) is caused by growth of the spring flush. Following this early fruit abscission event, immature fruit drop occurs during the summer, either in a wave or at a steady rate until the amount of fruit is stabilised on the tree.

Trials are ongoing to gain a better understanding of the dominance inhibition and/or competition between roots and shoots, to help deliver better management solutions to reduce the effect of shoot growth on fruitlet development. New trials for these studies have been established in South Australia since the project team’s last reporting to Hort Innovation.

The researchers are also continuing to look at the physiological mechanisms of early fruitlet abscission and summer fruit drop, with field trials in Western Australia.

Insights will be collected over the project period, before being collated and communicated to industry.

The project team have been continuing to bring together information on how reproduction events (including pollination, fertilisation, fruit set and fruit abscission) are regulated in avocado trees, and what the physiological mechanisms of resource competition and fruit growth cessation are. This information is what’s needed to allow key intervention points to be identified, to in turn develop effective management tools for limiting abscission and enhancing growth and development.

Preliminary field trials have taken place on a commercial orchard in Western Australia, looking at how pruning and application of fertilisation treatments (high nitrogen) affect the timing and degree of fruit abscission. Here, the team is looking at ways to induce substantial shoot growth, resulting in extensive fruit drop, to better understand the mechanisms at play.

The researchers are also looking at ways to manipulate stored carbohydrates in trees, to better understand the role of carbohydrates in resource competition. To this end, there is a field trial on a commercial orchard in South Australia, looking at how stored starch reserves can be increased. Starch accumulates over the winter months in the stems and woody tissues of avocado trees, and levels decline in spring as the reserves are mobilised for flowering, fruit set and growth, as well as the initiation of the spring flush. For this trial, treatments began in mid-April 2018 and continued through the winter months, with starch levels now being evaluated. The work will continue into future seasons.

In working towards tools and systems to address the physiological basis of high productivity, an established rootstock trial at Waikerie in South Australia is being used to investigate the role of rootstock/scion interactions in regulating tree yield, with information set to be published in an upcoming edition of the levy-funded Talking Avocados magazine.

As the project team report, fruit tree production is dependent upon mechanisms regulated by the nutrient status of the tree, as well as environmental cues. However, production is significantly limited by the fact that vegetative shoot growth coincides with fruit development, which results in resource competition for the carbohydrates, other nutrients and hormones necessary for maintaining growth.

This competition impacts on the early stages of fruit development, as shoot growth diverts resources, resulting in fruit growth cessation followed by abscission – a key event that limits avocado production.

The project has begun looking at relevant knowledge and knowledge gaps in this area, working with international experts and bringing together information from model plant systems and existing industry research to delve into how reproduction events are regulated (including pollination, fertilisation, fruit set and fruit abscission) and what the physiological mechanisms of resource competition and fruit growth cessation are.

This information is what is needed to allow key intervention points to be identified, to in turn develop effective management tools to limit abscission and enhance growth and development.

Field trials are upcoming, including those looking at factors affecting timing and degree of fruit abscission including pruning and fertilisation treatments.

In its course, the project will also be developing tools and systems to address the physiological basis of high productivity. It will begin using a rootstock trial to look at the role of rootstock-scion interactions in regulating yield, and will look to develop a method to manipulate stored carbohydrates to better understand the role of carbohydrates in resource competition.

Related levy funds
Details

This project is a strategic levy investment in the Hort Innovation Avocado Fund