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Public summary 
The quality and yield of mushroom crops depends critically on the quality of the compost used, but the methods used to 
measure compost quality have not changed much in the last forty years. Recent advances in our understanding of the 
microbiology of mushroom composting have suggested that this plays a crucial role in determining compost quality. The 
aim of this project was to develop a robust, largescale database of microbial biomarkers at different stages of mushroom 
composting, and use this database to link the microbial diversity in the compost with the yield and quality of the resulting 
mushroom crop. A preliminary survey of three successive compost crops from Australian composting facilities around 
Australia confirmed the feasibility of the study, and a major sampling program was then undertaken to determine 
bacterial and fungal dynamics during mushroom composting at compost yards in four Australian states over a 12‐month 
period, taking samples from four timepoints at every second compost crop. The microbes in 425 samples from 113 
compost crops were identified by next generation DNA sequencing, and their populations correlated with the yield and 
quality profile of the mushroom crops harvested from those composts. The resulting database comprises over 60 million 
DNA sequences, which will provide a detailed resource for further data mining in coming years. Biomarker analysis 
revealed that the bacterial taxa present at the end of Phase I show the most significant correlation with crop yield and 
quality. The most promising candidate as a biomarker is Thermus, but many of the other bacteria identified are poorly 
characterized or previously unknown, making it difficult to use them as specific biomarkers for crop management. This 
aim is also frustrated by variations in composting process between composters and the effect of market requirements 
(which influence harvested yield), and no consistent set of biomarkers for yield/quality could be identified that will be 
valid across the entire Australian mushroom industry. 
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Technical summary 
The quality and yield of mushroom crops depends critically on the quality of the compost used, but the methods used to 
measure compost quality have not changed much in the last forty years. Recent advances in our understanding of the 
microbiology of mushroom composting have suggested that this plays a crucial role in determining compost quality. The 
aim of this project was to develop a robust, largescale database of microbial biomarkers at different stages of mushroom 
composting, and to use this database to link the microbial diversity in the compost with the yield and quality of the 
resulting mushroom crop. A preliminary survey of the microbial diversity of successive compost crops from Australian 
composting facilities around Australia was carried out using 16S V3‐V4 amplicon sequencing (Illumina Miseq), and 
confirmed that the bacterial succession during composting was consistent at individual compost yards, and that the 
microbial dynamics reflected traditional measures of compost quality such as C/N ratio, humification, microbial biomass, 
and nitrification ratio. A major sampling program was then undertaken to determine bacterial and fungal dynamics during 
mushroom composting at compost yards in four Australian states over a 12‐month period, taking samples from four 
timepoints at every second compost crop. The microbes in 425 samples from 113 compost crops were identified by next 
generation DNA sequencing (V3‐V4 16S for bacteria; ITS1 for fungi), and their populations correlated with the yield and 
quality profile of the mushroom crops harvested from those composts. After quality filtering, chimera removal and 
taxonomic assignment (dada2 pipeline on the R platform), the resulting ASVs were assembled into a database comprising 
over 60 million DNA sequences, including 87,000 bacteria ASV’s and almost 3,000 fungal ASV’s. This database will provide 
a detailed resource for further data mining in the coming years. Biomarker analysis revealed that the bacterial taxa 
present at the end of Phase I show the most significant correlation with crop yield and quality (p < 0.05; filtered for taxa 
present at > 0.1% in > 80% of samples of each composting phase). The most promising candidate as a biomarker is 
Thermus, but many of the other bacteria identified are poorly characterized or previously unknown, making it difficult to 
use them as specific biomarkers for crop management. This aim is also frustrated by differences in composting process 
between composters and the effect of market requirements (which have a major influence on harvested yield), and no 
consistent set of biomarkers could be identified that will be valid across the entire Australian mushroom industry. 

Keywords 
Compost, mushrooms, microbial diversity, Mycothermus, Agaricus, mushroom yield, mushroom quality, biomarker; 
compost quality 
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Introduction 
Current techniques for measuring mushroom compost quality have changed very little in 40 years. They depend largely 
on a limited number of chemical assays and on the empirical personal expertise of composters, acquired over years of 
experience. These measures are invaluable, but effective compost management requires them to be more strongly 
integrated with the outcomes of modern compost research. In particular, since composting is a microbial process 
characterized by a complex succession of microorganisms, there is a need to understand the optimum microbe 
concentrations (both the total population, and the populations of key microbial groups) in order to design a compost 
quality indicator that correlates microbial load with crop yield and quality. 

Indicators for compost maturity/stability are used in many composting processes, including municipal composting and 
composting of various manures. Typical variables measured include water‐soluble carbon, C/N ratio, nitrification ratio 
(NH4/NO3), content of humic material, and microbial respiration (measured as CO2 release). For composts used in the 
horticultural industry, plant related variables such as seed germination and seedling survival are sometimes also included. 
Usually a combined “compost maturity index” (CMI) is generated, which is composed of several factors (e.g. the Solvita 
compost test, which combines values for NH3 and CO2 production). Since the aim of composting is to stabilize nutrients 
from e.g. manure in a form that does not damage the environment, there are often legal requirements for “compost 
stability” that must be met before compost is used, and these form a minimum list for a “compost quality index” for these 
composts (Bernal et al. 2017). 

For mushroom composting, by contrast, the most important use of a compost quality indicator is to determine that the 
compost will afford high yield and quality of mushrooms. Methods that correlate physicochemical compost parameters 
with mushroom yield have been reported periodically, but have not found great take‐up in the industry. Sharma and 
Kilpatrick (2000), for example, identified a combination of pH, dry matter, ammonia, carbon, ash, Cu, Fe, and Na as 
explaining >90% of yield variation. Similar results were reported more recently by Spanish researchers (Zied et al. 2011), 
who measured properties of casing and compost separately, though with less accurate predictions of yield. It should be 
noted that the number of parameters required for yield prediction in these studies would make them impractical for 
composters to use routinely, and the number of crops evaluated in the reports was relatively low.  

The last ten years have seen a rapid expansion in our knowledge and understanding of the microbial dynamics of 
mushroom composting. From a starting point in 2003 where fewer than 100 different bacterial and fungal taxa were 
known in mushroom compost (Ryckeboer et al. 2003), we can now identify and track tens of thousands of different 
species, all of which are active at different stages of mushroom composting, spawn run and cropping (Cao et al. 2019; 
Carrasco et al. 2020; Kertesz et al. 2016; Thai et al. 2022; Vieira and Pecchia 2021). The aim of the current project was to 
generate a largescale database of compost microbes, covering a 12‐month timespan of composting at multiple sites 
within Australia, and to use this database to identify bacterial taxa whose populations at different stages of composting 
are diagnostic of increased yield or quality in the subsequent mushroom crop, and which can act as biomarkers for yield 
management during mushroom production. 
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Methodology 
Experimental design 

The project consisted of two major experimental components: a proof‐of‐concept program, sampling from three 
successive compost crops at individual composters, followed by a full‐scale compost sampling program, conducted over 
12 months. In the original program design, each of these sampling programs envisaged sampling from 6‐8 composting 
facilities with a geographical spread over all four mainland Eastern Australian states.  

The “proof‐of‐concept” stage of the program consisted of compost sampling from three successive compost crops (four 
timepoints per crop) at four different compost facilities in different states. The aim of this initial study was to determine 
the reproducibility of microbial diversity at each compost yard (successive crops were expected to be very similar in 
quality and microbial composition), and to evaluate how well the changes in microbial diversity during composting 
reflected physicochemical parameters of compost that are traditionally used to measure composting efficiency and 
compost quality. 

The major sampling program commenced in October 2022, after the “proof‐of‐concept” stage had been completed. In 
this program, composters sampled compost at four time points from every second compost crop over a period of 12 
months (a total of 26 crops per composter). Four composters (in Queensland, Victoria and two from South Australia) 
provided a complete 12‐month set of samples, while one facility was only able to provide a subset of the expected 
number of samples. The analysis below focusses on the data obtained from the four participants, in three Australian 
States, who completed the full 12‐month sampling program. 

 

Compost sampling from commercial composting facilities 

Compost samples used in the project were obtained from five commercial mushroom composting facilities located in 
New South Wales, Queensland, Victoria, and South Australia. For confidentiality reasons, the composters are not named 
in this report. Compost samples taken at specific timepoints during the composting process (start phase I (bunker fill); 
mid Phase 1 (on turning); end phase 1; end phase 2). Each of these samples were pooled samples, produced by combining 
ten independent samples taken from across the face of the compost pile at each timepoint. Sampling was done on site by 
industry personnel, who were provided with appropriate training by the research team using a training video made by the 
team (https://www.youtube.com/watch?v=TZG_QKWlOyA), and additional training where needed. Compost samples 
were frozen on site (freezers were provided on request by the project team) and the collected, frozen samples were 
shipped to the University of Sydney for analysis every 2‐3 months. The samples were sent by express courier and received 
within 24 hours, and they were stored at ‐20 °C when received.  

Before analysis, compost samples (0.5 ‐ 1 kg) were thawed to room temperature and thoroughly homogenized in a 
rotating 25 litre plastic drum (containing three internal baffles) for 1 minute. Samples were then emptied onto a sterilized 
stainless steel worktop (thoroughly cleaned with 80% ethanol) and randomized subsamples collected for chemical 
analysis (ca. 500 g) and DNA analysis (10 g). Where possible, approximately 100 g of each compost was retained (stored at 
‐20 °C) for future analysis of other parameters. 

Compost physicochemical measurements 

Water content of the compost was measured gravimetrically by weighing subsamples of compost before and after oven 
drying. Moisture content was expressed as a percentage of the fresh weight. Ash content was determined gravimetrically 
after heating the dried sample for 2 h in a muffle furnace at 550 °C. pH and electrical conductivity of casing and compost 
extracts were determined using a pH meter and digital conductivity meter in 1:10 water extracts. Total carbon (C), 
nitrogen (N), and sulfur (S) content of dried and finely ground samples of feedstocks and compost substrates were 
determined by combustion. Total water‐extractable C and N was measured using a TOC analyser. Microbial biomass in 
compost was estimated using the fluorescein diacetate (FDA) hydrolase assay (Shaw and Burns 2006). The humification 
index (HIX) in compost was measured by fluorescence spectroscopy of compost extracts (Ohno 2002). Nitrate and 
ammonium levels in composts were measured in water extracts using anion chromatography and cation chromatography, 

https://www.youtube.com/watch?v=TZG_QKWlOyA
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respectively. Total free amino acids in compost were measured using a ninhydrin‐based method (Zhang et al. 2013). 

Molecular characterization of microbial diversity in compost 

Microbial diversity in compost samples was analyzed by high‐throughput amplicon sequencing of total compost DNA. 
Total DNA was extracted from freeze‐dried, ground compost samples using a beadbeating method and purified using DNA 
binding magnetic beads. Bacterial communities were investigated using the V3‐V4 region of the 16S rRNA gene, while 
fungal communities were studied using the ITS1 locus. Amplicon sequencing (Illumina MiSeq) was done by the Australian 
Genome research Facility, and the resulting sequence files were processed using the error‐correcting DADA2 pipeline, 
implemented on the R platform. Taxonomy was assigned by comparisons with the SILVA database for bacteria and the 
UNITE database for fungi. 

Measurements of mushroom crop yield and quality, and correlation with microbial diversity. 

Records of the mushroom yield and quality obtained from individual compost crops were provided by growers on a 
confidential basis. Participating growers were closely associated with the respective compost producer, to ensure that 
each compost was used alone and was not blended with composts from other sources. Records kept by individual 
growers were not entirely consistent, since different producers record quality differently, using different scales. The data 
received were therefore normalized to a consistent scheme. Yield was recorded as (a) yield per flush (kg/m2); (b) yield 
over first two flushes (kg/m2); (c) total yield per crop (kg/m2); and (d) biological efficiency (kg/kg compost dry wt). Quality 
was recorded as (a) % Premiums (white, round, no blemishes); (b) % A grade (off‐white, slightly off shape, some 
blemished); (c) % B grade (off‐shape, blemished, very dirty); and (d)% C grade (not edible, diseased, dead).  

Crop yield and quality were correlated with microbial diversity using a linear mixed modelling approach in the R platform. 
The yield and quality parameters listed above were incorporated as meta‐data in the microbial database, and microbial 
taxa that were significantly correlated (p<0.05) with changes in yield/quality were identified. These were further filtered, 
to only include taxa that were present in >80% of compost samples, and made up >0.1 % of the microbial population 
concerned. 

 

Results and discussion  
Impact of the Covid-19 pandemic on the Biomarkers project 

The project commenced shortly before the outbreak of Covid‐19 in 2020, and this led to considerable difficulties in the 
sampling programs and disruption of the selection of composters that were able to participate. Several collaborating 
compost facilities went out of business over the period of the project, and changed supply/demand/labour conditions in 
the industry meant that others were forced to withdraw from the sampling program (mainly due to a lack of available 
staff and financial constraints imposed by the changed market conditions).  

The most pronounced effect of the Covid‐19 pandemic was a severe delay in implementation of the project, mainly 
because of the need to sample from a defined sequence of crops (3 successive crops for the “proof of concept” stage; 26 
crops, sampling every second crop over 12 months for the main stage). The “proof‐of‐concept” stage of the project finally 
commenced in May 2021, but had to be halted again in June 2021 because of Covid lockdowns during the second half of 
2021. Sampling for this part of the project was finally completed in January – April 2022. There was no effect on data 
integrity for the “proof of concept” stage, because intact sampling series were obtained by restarting sampling after 
lockdowns.  

For the main phase of the sampling program, two of the original participants had to abandon the program shortly after 
commencement, due to the market and management problems outlined above. Replacement composters were recruited, 
but these necessarily had a delayed start to their sampling program. Although each of the analysed datasets contained a 
full 12‐months’ worth of samples, the overall sampling period lasted from October 2022 – February 2024 and the exact 
12‐month sampling period undertaken by participating composters was therefore not identical for all participant (e.g. one 
yard sampled from October 2022 ‐ November 2023, while another sampled from January 2023 – February 2024). For the 
analysis below, each set of results have been re‐aligned to match a calendar year, so that seasonality can be taken into 
account.  
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Consistency of microbial markers at Australian compost yards.  

The major aim of this project was to establish a database of microbial biomarkers in mushroom compost, and to link 
these to changes in mushroom crop yield and crop quality. In order to guarantee the value of this database, two pre‐
conditions must be met: 

• Measured microbial diversity in mushroom composts must be consistent, with similar microbial communities 
observed reproducibly at specific stages of the composting process at different compost yards; 

• Measured microbial diversity must correlate with known measures of compost quality at different stages of the 
composting process (e.g. pH, C/N content, humification, moisture content, ammonia content) 

These two preconditions were investigated in an initial “proof‐of‐concept” sampling program. Samples were taken from 
four timepoints (bunker fill, mid Phase I, end Phase I and end Phase II) during three successive compost crops at each of 
four composting yards. Bacterial diversity was measured in these samples, and compared with measurements of a range 
of physicochemical parameters: moisture content, C/N ratio, pH, Humification Index, total C, total N, soluble C, total N, 
microbial biomass, ammonium content, nitrification ratio (ammonium:nitrate). 

Successive compost crops showed a high level of consistency both in physicochemical parameters and in bacterial 
diversity (Fig. 1). Composts sampled at the start of Phase 1 (wetted compost immediately before bunker fill, after addition 
of brew) showed a relatively diverse range of chemical markers (Fig. 1A) and bacterial diversity (Fig. 1B) from different 
composters. Compost samples with similar microbial communities appear in close proximity to each other on the plot 
(Fig. 1), so close clustering indicates a close microbial relatedness between compost samples. For each compost yard, the 
three successive crop samples were found to be closely aligned at each stage of the composting process, confirming the 
consistency at each yard. At bunker fill there was a broader divergence of microbes in composts from different yards, 
which was expected because yards in different States source their raw materials from different suppliers and different 
parts of the country. However, the compost microbial communities become more similar later in the composting process, 
and the Phase 2 microbial communities from all yards are very similar. This demonstrated that successive compost crops 
from an individual composter are highly reproducible in the succession of bacterial diversity, and that a major sampling 
program is unlikely to suffer from high levels of random variation between crops. 

 

Correlation of bacterial biomarkers to physicochemical measurements of compost quality 

This initial sampling program also addressed the question of whether the microbial composition of compost varies in a 
similar manner to physicochemical measures of compost quality. A range of currently used physicochemical parameters 
were monitored in the samples taken. These included measures of compost maturity (C/N ratio, pH); conversion of plant 
material to humic acids (humification index); release of soluble nutrients during breakdown of plant material (soluble C, 
N); microbial biomass (FDA hydrolase activity); nitrogen metabolism (ammonium content and nitrification ratio). The 
combined data are presented in Fig. 1A. Once again, compost samples with similar sets of physicochemical parameters 
appear close to each other on the plot, so chemically similar composts appear close together. The results are very similar 
to those obtained for total microbial diversity (Fig. 1B), with good reproducibility between successive crops at each 
individual yard, and broader variation between yards. The bunker fill samples showed highest variation, but across all 
yards the end Phase 1 samples were less consistent with each other, and the end Phase 2 samples more closely related 
still. Traditional physicochemical compost quality measures are thought to be related to the resulting mushroom crop 
yields and quality, though developing a reliable predictive tool has proved elusive despite many attempts in the last forty 
years. The similarity in the progression between phases observed for physicochemical indicators (Fig. 1A) and biological 
indicators (Fig. 1B) confirms that microbial biomarkers are closely correlated with known markers of compost quality, and 
may therefore feasibly be related to mushroom crop yield and quality. However, the resolution of the microbial data is 
much higher (up to 500 different bacterial taxa in each sample, versus eleven physicochemical indicators), so the 
probability of being able to discover and optimize a reliable prediction of yield/quality is much higher. 
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A B

 

Figure 1. Chemical and biological markers of compost quality. A. Chemical indicators of compost quality, including C/N 
ratio, pH, Humification Index, soluble C, N, microbial biomass, ammonium content, nitrification ratio. B. Biological 
indicators: bacterial diversity measured by DNA analysis (next generation DNA sequencing). Plots represent principal 
component analysis (PCA) of combined data sets. The data were obtained from three successive crops at four composting 
yards, and four timepoints in composting. Ellipses represent 95% confidence intervals. 

 

Constructing a large-scale compost microbial diversity database – sampling and data collection. 

The observed microbial community in compost at different stages of composting is roughly consistent at different 
composting facilities (Fig. 1B), but there are many factors that may affect the specific microbes present at each stage and 
the quality of the final product. Several of these are related to the geographic location of the facility. Compost yards in 
different regions of Australia obtain their wheat straw from different locations (e.g. NSW yards largely from Western NSW 
and from the Riverina, South Australian yards largely from the Eyre peninsula), though this varies according to seasonal 
availability, especially in drought years. Different wheat‐growing areas use different wheat cultivars, which are optimized 
for the respective soil and climate conditions, and this can affect the microbial content/diversity of the straw. Storage 
conditions for straw after harvest also vary across regions, modifying the effect and duration of adding “new season‐
straw” on the composting process. Compost microbial diversity is also strongly affected by differences in compost 
management processes, and it was important to include a range of different composting methods in order to achieve 
good oversight of methods used by Australian composters. Phase II pasteurization/curing methods are very similar at 
most Australian composters, and Phase II is commonly done in a closed tunnel over about 5‐7 days (though one of the 
participating composters uses a tray pasteurization system instead of a tunnel). By contrast, Phase I composting varies 
greatly between different composters. Differences include the duration of wetting and of thermophilic composting, the 
number of turns (or rate of aeration), the use of an indoor tunnel, outdoor bunker, or outdoor windrow, the rate of 
application of water or goody water, the timing of poultry manure addition and the addition of supplementary feedstocks 
(e.g. stable bedding, feather‐meal, oilseeds, or inorganic components such as urea).  

In order to investigate annual variation in composting (e.g. the effect of adding new season straw), samples were taken 
were taken from every second crop (i.e. fortnightly) over a 12‐month period. Randomized 10‐fold samples were taken 
across the bulk of the compost (taken during turning in order to sample top, middle and bottom of the compost), and 
thoroughly blended before analysis. The participating composters included two producers using entirely indoor 
processes, and others producing Phase I compost in an outdoor bunker or on an aerated slab. The use of goody water 
varied, with some composters using only goody water for straw wetting, while others used either a lesser proportion of 
goody water or used goody water initially and then switched to fresh water. The pattern of goody water use is particularly 
relevant, since it contains a large population of microbes and acts as an inoculum for the straw (Safianowicz et al. 2018). 
In addition, the mixture and proportion of feedstocks varied considerably between composters. All these factors are 
expected to have a considerable influence on microbial content and diversity. Unfortunately, it was not possible to 
include this compost management information in the database, because of the need to ensure industrial confidentiality. 
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The composters included in the sample set have been anonymized (see below), but inclusion of method data would have 
too readily allowed their identification, especially as it is linked to yield and quality data. 

The compost samples taken during the project, and the bacterial/fungal sequences obtained, are summarized in Table 1. 
A full year’s samples (26 crops) were obtained from four yards, (W, X, Y and Z). A fifth yard (V) provided a smaller set of 
samples. In all, 113 compost crops were sampled at multiple timepoints, providing 425 samples.  After DNA sequencing 
and quality control of the sequences, this provided a total of 58 million bacterial DNA sequences and 11.9 million fungal 
DNA sequences, representing over 87,000 different kinds of bacteria, and nearly 3,000 different kinds of fungi. The 
distribution of these microbes in different composts is presented in the database (Appendix 2), and an initial analysis is 
provided below and in the attached technical Appendix 1. 

 

Table 1. Compost samples analyzed in the 12‐month farm sample sequence, and the bacterial/fungal data obtained from 
these composts.  

Composter V W X Y Z Total 

Start of sampling  Sep‐22 Aug‐22 Dec‐22 Oct‐22 Oct‐22  

Crops sampleda 9 26 26 26 26 113 

Total sample number 35 102 96 93 99 425 

Missed samplesb 12.50% 1.90% 4.00% 10% 3.90% 5.10% 

 

Bacterial DNA 
sequencesc 4,795,434 14,025,730 13,365,172 11,494,847 14,432,191 58,113,374 

Fungal DNA sequences 
(end Phase I)d 1,085,698 4,534,853 2,350,012 3,070,520 2,714,184 11,923,976 

Total bacterial genotypes 13,642 21,013 29,443 25,819 24,962 87,353 

Total fungal genotypes 
(end Phase I) 428 1,044 734 1,021 915 2,950 

Crops with associated 
yield/quality data 0e 25 25 23 26 99 

a) Samples were taken from every second compost crop, so 26 crops represent one calendar year of sampling. 
b) Missed samples within the crops sampled, (operator error or sample loss through freezer breakdown). 
c) The bacterial and fungal sequence numbers are for high quality sequences used in analysis (after removing noise, 

low quality sequences and chimeric sequences). Raw sequence counts were approximately 2‐fold higher. 
d) Bacterial diversity was determined at four timepoints for each crop, while fungal diversity was only determined 

for Phase I composts.  
e) Composter V was only able to provide a subset of a year’s samples (9 crops), so it was not possible to include 

comparable yield/quality data from Yard V in the overall dataset. 
 

Microbial diversity in the 12-month farm sample sequence. 

The bacterial communities in composts from the 12‐month farm sample sequence revealed a clear succession of the 
types of bacteria present during composting (Fig. 2), as expected from the “proof‐of concept” trial (Fig. 1B). Samples from 
bunker‐fill (purple symbols) are biologically different from end‐Phase I (red symbols), with Mid‐Phase I samples 
intermediate between the two. End‐Phase II samples (green symbols) are biologically very different from the others, 
confirming the importance of proper conditioning in the biological production of a high‐quality compost.  
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The original project design envisaged bacterial analysis of compost from 6 yards, rather than the four used in the final 
database. To compensate for this shortfall, fungal community analysis was added to the program, and was carried out for 
all end‐Phase I samples (Fig. 2). Phase II composts were not analyzed, since they are generally dominated (>95%) by 
Mycothermus (Scytalidium) (Thai et al. 2022), and diversity analysis is therefore less informative. The fungal diversity of 
Phase I composts was very similar for three of the yards studied, but slightly different for Yard Z (Fig. 2). This difference 
was not reflected in the bacterial communities, where all four yards appeared quite similar. 

 

 

Figure 2. Bacterial and fungal communities in mushroom compost. Bacteria: Communities are grouped according to the 
phase of composting. Fungi: All samples are from end Phase I compost, communities are grouped according to 
composter. Compost samples with similar bacterial or fungal communities are close together on the plot. Ellipses 
represent 95% confidence intervals. 

 

As discussed above, annual changes in feedstock quality were anticipated to cause cyclical changes in the microbial 
diversity of the compost. Diversity parameters were compared across the annual cycle (making allowance for the fact that 
different composters commenced sampling at different times (Table 1)), and considerable variation was indeed observed. 
Unexpectedly, this variation did not show a cyclical pattern, and was also not correlated with the presence of particular 
microbial taxa in the compost. New season straw is considerably different from weathered straw in its microbial load and 
diversity, and breaks down much more slowly during composting, so composters are careful to blend new season straw 
very gradually into their compost feedstocks when it becomes available. This care appears to be effective, since it does 
not lead to an annual cycle in the bacterial fingerprint of the compost. Seasonal variations in weather conditions might 
also be predicted to cause annual variation, especially for composters using outdoor composting (e.g. for Phase I bunkers 
or windrows), but this was also not observed. 

 

Mushroom crop yield and quality in the 12-month farm sample sequence. 

Data on the yield and quality of mushrooms produced from 378 of the composts studied were obtained from the 
production records of the enterprises concerned. No attempt was made to validate the data provided by growers, or to 
benchmark these data through independent growth trials using the same composts (this had been proposed in the initial 
project but was removed on the advice of the Project Reference Group).  

Measurements of quality may take many different forms, but this study relied on a market‐oriented approach, reporting 
% Premiums, and A‐, B‐ and C‐grade mushrooms. Unexpectedly, this led to complexity, since different growers recorded 
different scales, depending in part on the requirements of the wholesaler, so the values used for each composter have 
been standardized to the descriptors listed under methodology above. Although samples of each compost have been 
retained for possible future analysis of other parameters, it was unfortunately not possible to obtain samples of the 
mushrooms produced. Future projects could potentially also examine nutrient composition of the mushrooms (minerals, 
protein, vitamins, etc) to correlate with cultivation parameters and compost microbial diversity. 
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The annual cycle of yield/quality for Yard W (Fig. 3) shows typical variation at an individual composter. There was some 
variation in yields of first and second flush during the year, and third flush was only harvested where required. No annual 
cycle was apparent. The picked crop was >95% Premiums and A‐grade mushrooms, but it is not clear from the data 
whether this is an accurate representation of the entire crop, or whether lower grade mushrooms were not accurately 
recorded because of their lesser market value. It is noteworthy that the average quality was lower in yards where a third 
flush was regularly harvested, due to the lower quality normally obtained for third flush.  
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Figure 3. Variation in mushroom crop yield and quality over 12‐months. Representative data are shown for Yard W – 
other yards are shown in the Technical Appendix. Yield (kg/m2) for each flush is shown on the left‐hand vertical axis (flush 
1 – dark blue, flush 2 – green, flush 3 – orange). Crop quality (%) is shown on the right‐hand vertical axis (Yellow – 
Premium grade, red – A grade, light blue – B grade, dark green – C grade). 

 

Correlation of microbial diversity with mushroom crop parameters – compost biomarkers for 
mushroom crop yield and quality. 

The most important aim for the project was to correlate microbial biomarkers at each of the composting phases with 
observed increases (or decreases) in crop yield and/or quality. Identification of key diagnostic biomarkers that are linked 
to enhanced yield could provide an important tool for better compost management. For example, the presence of a 
particular “increased‐yield” biomarker in Phase I compost might allow the grower to negotiate better market contracts 
prior to harvesting, while the presence of a “reduced‐yield” biomarker might prompt remedial action in composting, or 
even recycling of the compost to avoid the costs associated with a low‐yielding mushroom crop.  

No individual bacterial genotypes were identified that were statistically correlated with crop yield or quality, so further 
bacterial biomarker analysis focused on the level of bacterial genus. Several genera (i.e groups of closely related species) 
were identified that were significantly correlated with increased or decreased yield/quality in the overall database (Table 
2). Significant effects (both positive and negative) were found most frequently for Phase I compost, and no diagnostic 
biomarkers were found in Phase II compost. The most interesting correlation was the correlation of Thermus in Phase I 
with an increase in yield. Thermus is one of the most abundant bacterial taxa observed at the end of Phase I and makes 
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up a large proportion of the bacterial population of goody water (Safianowicz et al. 2018), so this may be a useful 
diagnostic result.   

Additional detail relating to the individual participating composters is provided in the Technical Appendix (Appendix 1). 
This revealed a larger number of positive and negative yield correlations, which were statistically significant at individual 
yards, but were not apparent in the combined database because of variation in microbial diversity between composters.  

 

Table 2. Bacterial genera correlated with increased or decreased total mushroom yield and quality (p<0.05) in the overall 
database, combining all the composters tested. The genera with the strongest effect are shown for each Phase (blank 
fields indicate no significant correlations). Genera in the final column are statistically associated with the designated 
effect whenever they appear. Positive and negative correlations are indicated in green and red, respectively. 

 
Effect Bunker‐fill mid Phase I end Phase I 

end Phase 
II 

All phases 

Yield positive   Thermus   

 negative Chelativorans Thermobispora Caldicoprobacter  Thermobacillus 

Quality % Premiums   Blastocatella   

 
% Premiums 

  
Catenococcus, 

Devosia, Bacillus   

 
% A‐grade 

  
Xiphinematobacter, 

Pelomonas  Flavobacterium 

 % A‐grade      

 % B‐grade      

 
% B‐grade 

    

Thermobacillus, 
Sphaerimonospora, 

Chelatococcus 

 

Because bacterial diversity was the main aim of the project, the fungal diversity was only measured at the end of Phase I. 
This choice reflected the observation that most bacterial biomarker correlations with crop yield and quality were 
observed at the end of Phase I. In addition, since the fungal community at the end of Phase II is generally composed of 
>95% Mycothermus, it was thought unlikely that small changes in this fungal composition would have a significant effect 
on crop yield (but see additional comments in the Recommendations section below). However, no fungal genera in Phase 
I compost were found to be significantly correlated with crop yield or quality, either at individual composters or in the 
combined dataset. 

 

Key conclusions for the observed correlations between compost biomarkers and yield/quality of the 
mushroom crop. 

1. Statistically significant correlations (>95% certainty) of individual bacterial genera with mushroom yield/quality 
were more frequent for end Phase I compost than for compost at other composting timepoints. The Phase I 
process is the most variable stage of mushroom composting. Across the yards studied, there was considerable 
variability in how Phase I was implemented, including (a) use of outdoor bunkers, outdoor windrows or indoor 
bunkers, (b) varied length of Phase I composting, (c) varied frequency of compost turning, (d) nitrogen (poultry 
manure and/or inorganic N) and other components added to the straw in different forms and at differing 
timepoints, (e) water and goody water added in differing proportions and at different times. All of these variables 
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directly affect the microbial succession observed during composting and contribute to the considerable variability in 
the Phase I microbial community observed between composters (Figure 2).  

In addition to differences between the standard processes used by each composter, there are also slight variations 
that are applied by each composter in the course of their daily work. These may be partly experimentation (e.g. 
adding part of the manure at a later timepoint), or may be simple changes caused by e.g. shortage of staff, changed 
quality of feedstocks, reduced demand, etc. In this project, composters were asked to record major changes to the 
composting and growing process that might have affected yield/quality (e.g. loss of one flush, disease problems, 
delayed ammonia clearance in Phase II). These were controlled for during the modelling stage, but even when the 
affected crops were eliminated from the model, there was no significant change in the biomarkers observed. 

The project aimed to develop biomarkers that would be applicable to the whole industry, and so no attempt was 
made to identify differences caused by the overall composting process used at each composter (e.g. details of 
temperatures, times, turning rates, aeration rates etc). This was partly because the details were regarded as 
commercial‐in‐confidence, and could therefore not be recorded in the database, and partly for statistical reasons. 
With only four yards sampled, effects due to e.g. the use of an outdoor bunker vs an indoor bunker could not have 
been distinguished with statistical confidence from other composter‐dependent effects. It was also not possible to 
include all the minor, day‐to‐day changes in composting process, as these are not usually recorded and their 
inclusion would have provided a very heavy additional burden for the participating composters.  

The compost microbe community at the end of Phase I needs to be appropriate to ensure effective conditioning of 
the compost, mediating the complete removal of ammonia and the growth of Mycothermus and its associated 
microbes by the end of Phase II. The results obtained here reveal that slight changes in this bacterial community 
have a significant effect on mushroom yield, presumably because of their influence on the microbial succession 
during Phase II. Interestingly, these effects on yield are more significant than changes in the bacterial community at 
the end of Phase II – this may be because of effects of the Phase I bacterial community on development of the end‐
Phase II fungal community, which is dominated by Mycothermus (see the Recommendations below). 

Effect of feedstock variability ‐ Variability in microbial diversity in the feedstocks (i.e. start Phase I) was even larger 
than at end Phase I (Figure 2), but most of this diversity was in mesophilic taxa (i.e. those that grow optimally at 
temperatures of 20 – 45 °C). These taxa are sensitive to the high temperatures experienced in Phase I (>70 °C), and 
are killed during high‐heat composting (including potential human pathogens in the poultry manure). This provides a 
good explanation of the lack of correlation of these taxa with final yield/quality. 

Effect of Phase II variability ‐ Microbial variability between composters at the end of Phase II was considerably 
lower than at the end of Phase I, because the Phase II process of pasteurization and conditioning in a closed tunnel 
was quite uniform at the different yards studied. It was nonetheless expected that the bacteria present at the end of 
Phase II might be strongly correlated with mushroom yield/quality, because the Phase II microbial community is 
essential for strong mycelium proliferation during spawn run. For individual compost yards this was indeed the case, 
with some of the strongest correlations observed at end Phase II (see Technical Appendix). However, the bacterial 
biomarkers observed were different at different composters, and so they did not provide uniform biomarkers that 
could be used to predict crop yield across the industry. 

2. Most of the statistically significant correlations (>95% certainty) showed a negative correlation with yield or 
quality, not a positive effect. The magnitude of these observed effects was generally quite small. This is a 
phenomenon that is not uncommon when working with large datasets. Most frequently, the negative correlations 
are observed because the two correlated phenomena (in this case the population of a particular bacterial genus and 
the crop yield) are not directly linked, but are correlated through linkage to a third variable, for example, a physical 
parameter such as temperature, or an association with another organism. The magnitude of the effect is an 
indication of the utility of these taxa as biomarkers, but it must always be borne in mind that the respective genus 
does not cause the observed effect on yield. 

The frequency of negative correlations can also increase when there is selectivity of sampling, i.e. where certain 
groups of samples are either not tested, or not included in the analysis. In the current project, the four composters 
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that provided a complete set of data were operating at high efficiency, so there was very little variation in the 
observed yield or quality of the resulting crops. This means that even very small changes in conditions might affect 
particular bacterial populations and also be associated with an apparent marginal decrease in yield, hence yielding 
negative correlations. In principle, this could indeed be described as “selective sampling”, since we consistently used  
composts which were high‐yielding, and were not able to include data from low‐yield composts. This was not done 
intentionally (no samples were omitted from analysis), but due to the lack of availability of low‐yield composts for 
testing. There were low‐yield composts available at the time, but the respective composters were (for excellent 
reasons) more concerned with their own compost management, and they declined to participate in the study.  

3. Almost all of the significant correlations were for genera (groups of bacterial species) that have been poorly 
characterized, if at all. This is an important limitation on practical application of the results obtained. The 
understanding of microbial diversity in the environment has made enormous strides forward in the last ten years, 
and from DNA sequencing studies it is now clear that there are many thousands‐fold more bacterial species in 
environments like compost than were previously known. However, these species are identified by characterization 
of a single gene that is present in all bacteria – for most of these species there is no further information (yet) 
available on how they grow, and what their function is in the environment. This makes it almost impossible to 
speculate on why an increase in their population might be correlated with higher (or lower) crop yields, and whether 
this effect is merely a correlation (i.e. the increased crop yield and the increased population are both due to a 
secondary factor) or a causative effect (i.e. the increased population directly stimulates cropping efficiency). If the 
latter is true, then such strains could potentially be used as a “prebiotic” inoculum for compost – but many of these 
taxa have never been isolated or cultivated in the laboratory (they are known only from the environmental DNA 
sequences), so this is not yet possible.  

4. There was significant variation between individual composters, and the biomarkers identified were generally not 
consistent across different compost yards. The initial “proof‐of‐concept” phase of the project demonstrated that 
the compost microbial populations from each composter were consistent over successive crops, and that the 
bacterial succession during composting was consistent with changes in physicochemical compost maturity 
measures, which have been used in the past to measure compost quality. This eliminated the factor of random 
variation between crops, i.e. that successive compost crops might look microbially quite different from each other, 
regardless of compost quality. Nonetheless, the most significant statistical factor differentiating crops in the 12‐
month study was the composter. As described above, this was probably due to routine differences in the 
composting process between composters, e.g. effects of type and length of Phase I, time of addition of nitrogen, 
frequency of turning etc, all of which will affect the microbial population. These factors were not recorded and were 
not included in the analysis, partly these “tweaks” to the composting process are commercially sensitive, but mainly 
because the level of replication (only four composters included) would make it statistically impossible to evaluate 
the effects of individual changes. It was anticipated that biomarkers would be identified that are correlated with 
increased yield despite slight differences in the composting process – in the event, the only genus that was linked to 
increased crop yield was Thermus in end Phase I compost (see Recommendations section).  
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Outputs 
Table 4. Output summary 

Output Description Detail 

Database correlating 
microbial signature 
against yield and quality 
data 

Database correlating 
microbial signature 
against yield and quality 
data 

Appendix 2 

Publication Article in Australian 
Mushroom journal (2019) 

Appendix 3 

Webinar Webinar on mushroom 
compost biomarkers 
(AHR videos, 14th 
October, 2021) 

https://www.youtube.com/watch?v=unj5yTnPEI4  

Conference 

presentation 

Presentation of the 
Compost biomarkers 
database at the 44th 
AMGA conference, 
Adelaide, 28th October 
2022. 

https://youtu.be/1cY80XVap7I  

Conference 

presentation 

Presentation of the 
Compost biomarkers 
database at the 45th 
AMGA conference, 
Auckland, 24th October 
2024. 

https://www.youtube.com/watch?v=CasEI1tzKuY 

Conference 

presentation 

Presentation of the 
Compost biomarkers data 
at the ISMS/NAMC 
conference, Las Vegas, 
28th February, 2024. 

Invited presentation of the O’Neil Lecture, North American 
Mushroom Conference. 

 

https://www.youtube.com/watch?v=unj5yTnPEI4
https://youtu.be/1cY80XVap7I
https://www.youtube.com/watch?v=CasEI1tzKuY
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Outcomes 
Table 5. Outcome summary 

Outcome  Alignment to fund 
outcome, strategy and KPI 

Description  Evidence  

Improved awareness of 
microbial characteristics of 
compost at various stages 
of the production cycle and 
the impact on production 
outcomes. 

Aligned to SIP 2017‐2021: 
Outcome ‐ Mushroom 
growers are profitable and 
sustainable through 
increased yields, reduced 
costs and effective risk 
management; 
Strategy - Improve 
production by increasing 
yield and quality;  
KPI - identification of yield 
productivity increases 

The database developed 
by the project is the largest 
source of microbial 
information about 
mushroom compost ever 
compiled. It provides key 
information about the 
influence on mushroom 
yield and quality of 
bacterial and fungal 
biomarkers in compost at 
four stages of the 
composting process. 

Feedback from composters 
and growers at AMGA 
conferences, Feedback 
from composters and 
growers via the Marsh 
Lawson Steering 
Committee. Direct 
feedback from 
composters/growers 
participating in the project 

Mushroom growers 
equipped to increase 
profitability by managing 
compost microbes at 
optimum levels throughout 
the production cycle. 

Aligned to SIP 2017‐2021: 
Outcome ‐ Mushroom 
growers are profitable and 
sustainable through 
increased yields, reduced 
costs and effective risk 
management; 
Strategy - Improve 
production by increasing 
yield and quality;  
KPI - identification of yield 
productivity increases 

Production of a “biomarker 
calculator” and best 
practice sheet were 
projected outcomes for 
the project. However, 
detailed statistical analysis 
of the database did not 
reveal consistent 
biomarkers of yield/quality 
that can be implemented 
across the industry at this 
stage. Individual 
participants have been 
provided with data from 
their own company, which 
will guide their own 
production strategies. 

See Results and Discussion 
above. Discussion and 
advice from the Project 
Reference Group. 
Feedback from composters 
and growers at AMGA 
conferences 

Australian Mushroom 
grower access to microbial 
biomarker database for 
compost quality control. 

Aligned to SIP 2017‐2021: 
Outcome ‐ Mushroom 
growers are profitable and 
sustainable through 
increased yields, reduced 
costs and effective risk 
management; 
Strategy - Improve 
production by increasing 
yield and quality;  
KPI - identification of yield 
productivity increases 

Mushroom growers 
provided with an 
anonymized spreadsheet 
version of the database for 
further analysis. Direct use 
for compost quality control 
at all composters across 
the industry is not 
supported at this point, 
since no consistent 
biomarkers of yield/quality 
(either negative or 
positive) were found. 

See Results and Discussion 
above. Database 
introduced to growers at 
AMGA conference 2024, 
and feedback provided by 
delegates (composters and 
growers). Individual 
participants provided with  
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Monitoring and evaluation 
Table 6. Key Evaluation Questions 

Key Evaluation Question Project performance Continuous improvement 
opportunities 

To what extent has the project 
achieved its expected outcomes? 

The project has achieved its major 
outcome of generating an extremely 
large database of microbial 
biomarkers in compost, and linking 
these to mushroom yield and quality. 
Because of changes in the number of 
industry participants, the database 
was expanded from the original aim 
of only measuring bacterial 
biomarkers, to also providing Phase I 
fungal biomarkers. A broad range of 
compost biomarkers correlated with 
mushroom yield and quality were 
identified at individual composters, 
but there were not consistent across 
the industry. 

Delays in project realization because 
of the Covid‐19 pandemic and 
because the project required an 
uninterrupted 12‐month sampling 
period has meant that the database is 
at present only available in 
spreadsheet form. The very large 
amount of data provided provides 
extensive opportunities for further 
data mining, which will provide 
further insights into the influence of 
the compost microbial community on 
mushroom crop parameters. 

To what extent has the project met 
the needs of industry levy payers? 

The project has met the industry 
need for more knowledge about the 
impact of compost bacteria and fungi 
on mushroom crop yield and quality, 
with a massive increase in the data 
available for mushroom production 
on Australian farms. Unfortunately it 
has also demonstrated that variability 
in compost management (driven by 
market factors) plays a key role in 
determining both microbial 
characteristics and crop yield, and 
measured biomarkers of crop 
yield/quality are not consistent across 
the industry. 

Further insights into the impact of 
compost bacteria and fungi on 
mushroom crop yield and quality will 
be available through further data 
mining of the database provided. 

To what extent were mushroom 
composters and growers engaged 
with the biomarker database, the 
biomarker calculator, and the 
optimized user guide? 

A broad range of compost biomarkers 
correlated with mushroom yield and 
quality were identified at individual 
composters, but there were not 
consistent across the industry. The 
biomarker database has been 
generated and made available for 
further data mining, but it was not 
appropriate to produce a calculator 
or user guide at this point in time.  

Ongoing engagement during the 
project was hampered by the fact 
that the database was only available 
as a final output of the project. With 
completion of the initial data analysis, 
publication of the data in scientific 
journals is not planned, which will 
broaden the impact of the project 
considerably. 

Did the project engage with industry 
levy payers through their preferred 
learning styles (factsheets, User 

The project engaged with levy payers 
through industry presentations 
(webinars and conference 

A factsheet is planned, which will 
explain the impact of compost 
microbes on compost productivity 
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guide, webinars, demonstration 
trials)? 

presentations) and through articles in 
the industry journal (one published 
article, one article planned for early 
2025). As described above, 
engagement through factsheets and 
an optimized user guide was not 
possible, due to the nature of the 
results obtained (no consistent 
compost biomarkers of yield/quality 
identified that can be used across the 
industry). 

and its influence on mushroom crop 
yield and quality, but it will not have 
the predictive impact that was 
anticipated (and will therefore not 
amount to a “user guide for better 
crop yield”). 
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Recommendations 
• The bacterial genus Thermus was identified in end‐phase I compost as a positive bacterial biomarker of crop 

yield. This genus is abundant in end‐Phase I compost, and more work is required to validate this finding over a 
range of both high yielding and lower‐yielding composts, to determine the minimum level of Thermus in compost 
that is predictive of high crop yield. If appropriate, a rapid quantitative test for Thermus in end Phase I compost 
could then be developed (either PCR‐based or antigen based). 

• Thermus strains have previously been found at high levels in goody water, so when high‐quality goody water is 
used for straw wetting it effectively acts as a positive inoculum. However, this has only been studied at one 
compost yard (Safianowicz et al. 2018). This needs to be evaluated at other composters. If the finding is 
confirmed, then goody water management may be the most important aspect of maximizing crop yield. More 
detailed studies of microbial dynamics in goody water at a range of composters are urgently required. 

• The fungus Mycothermus is always present at high levels in end‐Phase II compost (usually >95% of the fungal 
population). The current project has only analyzed fungal biomarkers at end‐Phase I, but it is possible that the 
exact levels of Mycothermus at end‐Phase II may be diagnostic of yield. Further analysis of the end‐Phase II 
fungal population should be carried out immediately, using the samples from the current study, to determine 
whether a minimum level of Mycothermus in Phase II compost is predictive of high crop yield. 

• Although the participating composters in the database have been de‐identified in the database, individual 
participants have been provided with their personal dataset of biomarkers. This can now be combined with 
additional confidential process data for each crop that they may have recorded, which will provide considerable 
additional predictive power for yield and quality. 

• The bacterial biomarker database generated in this project provides a detailed resource for further data mining. 
At present, analyses have focused on identification of individual bacterial genotypes or genera that are 
statistically correlated with crop yield and quality. Further data mining is required to determine whether 
combinations of microbial taxa may be more effective than single genera or species in predicting crop yield and 
quality. 

• Most of the bacterial biomarkers in the database that are linked to increased yield and quality are 
uncharacterized genera, most of which have never been isolated or studied in the laboratory. More research is 
required to isolate and characterize these organisms, and understand their function in compost. A good example 
of this is the recent characterization of a novel bacterial species that is dominant in Phase II, Mycovorax 
composti, which attacks the fungus Mycothermus (Thai et al. 2024). Some functional characterization is possible 
using inference programs based on 16S bacterial diversity, such as PICRUST (Douglas et al. 2020) or Tax4Fun2 
(Wemheuer et al. 2020), which have been used in the past to predict tentative functional profiles in anaerobic 
digestion or composting (Ijoma et al. 2021; Jimenez et al. 2014; Wang et al. 2018) However, their performance is 
unreliable when used for inference outside human‐based datasets (Sun et al. 2020), and the results must be 
interpreted with care.  

• For future studies of this nature, benchmarking of cropping is essential. This was proposed in the original tender, 
but was abandoned on the insistence of the Project Reference Group. The use of grower data introduced 
numerous confounding variables, since measured crop yield and quality were dependent not just on compost 
quality, but on a multitude of other factors (e.g. market factors, labour availability, customer requirements for 
e.g. size, weight, whiteness, shelf‐life). In addition, statistical analysis of yield/quality required a uniform set of 
records kept by all participating growers ‐a minimum set of cropping details was requested for the project, but 
this was not always adhered to (especially for growers selling to customers with less rigorous requirements, who 
did not need to keep exact records of crop quality etc). Meaningful statistical analysis of the total dataset is 
restricted to parameters that are recorded for all crops, and this is most easily done by conducting standard 
benchmark trials, e.g. in the Marsh Lawson Mushroom Research Unit. 
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Scientific publications 

Journal article 

Kertesz, M. (2019) Compost biomarkers. A crystal ball for yield and quality? Australian Mushrooms 

Journal Spring 2019: 36-37. 
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1 Background - Microbial diversity in Australian mushroom composts 
 
 
 

2 Methods 
2.1.1 Compost sampling 

Compost samples used in the project were obtained from five commercial mushroom composting 
facilities located in New South Wales, Queensland, Victoria and South Australia. For confidentiality 
reasons, the composters are not named here. Compost samples taken at specific timepoints during 
the composting process were pooled samples of approximately 1-2 kg, produced by combining ten 
independent samples taken from across the face of the compost pile during turning. Sampling was 
done on site by industry personnel, who were provided with appropriate training by the research team 
(https://www.youtube.com/watch?v=TZG_QKWlOyA), and the samples were shipped to the 
University of Sydney for analysis. 

 

2.1.2 DNA extraction, amplification and sequencing 

Total compost DNA was extracted according to Lever et al. (2015) with some modifications. Ground 
compost samples (200 mg) were suspended in 200 mM sodium hexametaphosphate (100 µL), lysis 
buffer 1 was added (30 mM Tris/HCl, 30 mM EDTA, 800 mM guanidinium chloride, 0.5% (v/v) Triton X-
100, pH 10.0) (500 mL), and the samples were lysed using a homogenizer (MoBio Laboratories Inc.,) at 
2000 rpm for 5 min. Lysis buffer 2 (2.5 M sodium chloride, 2% (w/v) cetyltrimethylammonium bromide, 
0.1% (w/v) polyvinylpolypyrrolidone) (500 µL) was added, followed by incubation at 65 °C with 
agitation (500 rpm) for 30 min and centrifugation, Supernatants were extracted once with an equal 
volume of chloroform:isoamyl alcohol (24:1) and DNA was recovered from the aqueous phase using 
DNA binding magnetic beads (GE Life Sciences, Australia) in SPRI solution, following the manufacturer’s 

https://www.youtube.com/watch?v=TZG_QKWlOyA
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instructions. Bacterial diversity was analysed using primers 341F and 806R (Caporaso et al. 2011; 
Muyzer et al. 1993) to amplify the V3-V4 16S rRNA gene hypervariable region, with the Illumina MiSeq 
platform (paired 300 bp read lengths) at the Australian Genome Research Facility (AGRF) (Melbourne, 
Australia). 
 

2.1.3 Bioinformatics 

Raw FASTQ files were processed in R v3.6.1.(R Core Team 2019) Raw read quality was determined 
using FastQC. Trimming and filtering was determined using the DADA2 function ‘filterAndTrim’, 
(Callahan et al. 2016) discarding forward and reverse reads with an expected error score higher than 
3 and 4, respectively. Low quality reads were removed during trimming and filtering by setting 
‘truncLen’ parameters to 285 and 240 for the forward and reverse reads, respectively. Forward and 
reverse primers were trimmed from the 5’ end by setting the ‘trimLeft’ function to 17 and 20, 
respectively. The sequences were denoised and dereplicated using the ‘dada’ and ‘derep’ functions, 
unique sequences were merged with a minimum overlap of 20 base pairs and a sequence table was 
constructed with the resulting sequence variants.  

Taxonomy was assigned using a pre-trained SILVA Naïve Bayes classifier clustered at 99% identity 
(SILVA release v132) (Quast et al. 2012). Species assignment was done in a separate step using the 
SILVA release v132 for species assignment. 16S gene sequences that were affiliated with chloroplasts 
and mitochondria were removed prior to downstream analysis. Sequence variants which occurred in 
fewer than three samples and with fewer than three reads in each of these samples were also removed 
(singletons and doubletons). A phylogenetic tree was constructed using the packages “phangorn” 
(Schliep 2010) and “DECIPHER”, (Wright 2016) using the neighbour-joining method. 

Statistical analysis was done using the packages “phyloseq” (McMurdie and Holmes 2013) and 
“vegan”.(Dixon 2003) All graphs and plots were visualized using “ggplot2” (Wickham 2016). Shannon 
and Simpson alpha-diversity analyses were performed using the ‘plot_richness’ function from the 
phyloseq package before singletons and doubletons were removed from the dataset. Differences in 
the bacterial community (beta-diversity) were analysed in R (R Core Team 2019) using a canonical 
analysis of principal coordinates with unweighted UniFrac as the distance metric. 

DNA sequencing data are available at NCBI Short Read Archive under BioProject PRJNA867030. 
 
 
  

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA867030
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3 Consistency of microbial diversity in Australian mushroom 
composts 

 

Table 3.1. Number of bacterial genotypes found in composts from different composting yards at 
different stages of the composting process 

Yard Crop 
Sample 

Start-
Phase 1 

Mid-
Phase 1 

End-
Phase 1 

End-
Phase 2 

A 1 1479 1573 1759 1712 
 2 1553 1321 1456 1060 
 3 1189 885 2610 2130 

B 1 1925 1553 1933 2052 
 2 2199 1544 2023 1983 
 3 2409 2131 3593 1174 

C 1 2199 2034 1764 1388 
 2 1625 968 1341 872 
 3 2115 348 2183 1400 

D 1 2004 1563 2014 1529 
 2 1380 1619 1113 1540 
 3 1304 1656 2618 1904 

 

Figure 3.1. Key bacterial taxa identified in composts from different yards. Only genera constituting 
>3% of the total population are shown. 
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Figure 3.2. Distribution of bacterial communities in different phases of composting at four different 
Australian compost yards. Points that cluster close to each other contain similar bacterial 
communities. Ellipses represent 95% confidence intervals. 
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4 Physicochemical parameters of mushroom compost quality and correlation with bacterial diversity 
 
Table 4.1. Physicochemical parameters measured in three successive compost crops at four compost yards (designated A, B, C,D) in eastern Australia. 
 

Compost 
Yard Crop Phase 

Moisture 
Content 

% 
pH 

Total 
Carbon 
(g/kg) 

Total 
Nitrogen 

(g/kg) 

Carbon/ 
Nitrogen 

Ratio 

Total 
Extractable 

Carbon 
(g/kg) 

Total 
Extractable 

Nitrogen 
(g/kg) 

Humification 
index 

Biomass 
(FDA activity;  

μg/min/ 
gram 

compost) 

A  1 Start Phase 1 69.68 8.01 410.86 12.20 36.02 18.15 1.87 7.27 0.14 
A  1 Mid Phase 1 73.78 8.1 369.88 16.10 23.02 8.22 1.45 8.64 17.68 
A  1 End Phase 1 71.99 7.8 353.22 19.32 18.29 6.15 1.05 10.07 7.13 
A  1 End Phase 2 65.20 6.77 354.15 24.96 14.19 6.01 0.95 10.49 72.69 
A  2 Start Phase 1 68.83 7.92 399.03 11.92 33.59 10.36 1.18 6.99 25.63 
A  2 Mid Phase 1 72.69 7.91 371.97 16.34 22.80 7.43 1.35 10.23 6.89 
A  2 End Phase 1 71.41 7.67 360.49 19.09 18.89 5.17 0.91 8.76 20.05 
A  2 End Phase 2 65.50 7.04 351.93 25.54 13.79 6.37 1.01 9.55 77.08 
A  3 Start Phase 1 69.01 8.01 429.70 7.93 55.50 10.89 1.02 10.39 4.88 
A  3 Mid Phase 1 72.44 8.2 331.79 20.99 15.87 6.68 1.33 6.50 47.32 
A  3 End Phase 1 69.65 7.02 337.42 20.13 16.84 6.45 1.17 10.36 4.05 
A  3 End Phase 2 64.98 7.25 347.93 24.05 14.50 6.12 1.03 10.00 81.11 
B 1 Start Phase 1 72.84 7.87 363.67 12.22 29.81 6.66 1.75 8.30 64.47 
B 1 Mid Phase 1 70.79 8.2 340.47 18.21 18.77 5.44 1.17 8.42 9.87 
B 1 End Phase 1 71.89 7.89 348.31 16.16 21.56 4.89 1.51 7.46 40.87 
B 1 End Phase 2 63.82 7.74 350.29 26.59 13.18 7.18 1.20 7.23 11.17 
B 2 Start Phase 1 70.04 7.85 327.41 16.24 20.22 6.51 1.61 6.25 188.47 
B 2 Mid Phase 1 72.29 7.93 355.30 18.63 19.08 6.68 1.84 6.81 45.87 
B 2 End Phase 1 71.17 7.55 355.10 19.52 18.25 5.45 1.17 11.48 1.47 
B 2 End Phase 2 63.93 6.66 344.01 27.04 12.73 7.50 1.22 5.64 136.87 
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B 3 Start Phase 1 68.94 7.46 348.93 14.91 23.44 4.38 1.13 6.99 215.37 
B 3 Mid Phase 1 72.75 7.59 356.53 18.49 19.29 4.14 0.83 5.54 17.67 
B 3 End Phase 1 71.38 7.91 343.28 20.58 16.68 6.07 1.30 8.68 4.27 
B 3 End Phase 2 63.90 7.42 357.53 25.11 14.24 7.93 1.24 7.47 16.67 
C  1 Start Phase 1 70.19 7.99 374.90 19.21 19.52 8.76 1.89 5.84 18.35 
C  1 Mid Phase 1 73.48 8.22 367.78 20.59 17.97 7.31 1.33 9.75 49.59 
C  1 End Phase 1 70.26 7.76 370.62 21.52 17.23 6.37 1.08 11.44 15.16 
C  1 End Phase 2 63.24 7.8 355.34 28.70 12.39 7.01 1.06 3.76 144.70 
C  2 Start Phase 1 74.25 7.61 363.39 17.30 21.11 6.08 1.20 10.25 12.78 
C  2 Mid Phase 1 72.70 8.08 359.40 20.31 17.73 5.14 0.94 8.63 18.75 
C  2 End Phase 1 71.15 7.75 356.77 19.55 18.28 4.62 0.82 11.13 23.22 
C  2 End Phase 2 63.95 7.5 343.53 28.22 12.18 4.72 0.76 4.94 123.60 
C  3 Start Phase 1 72.76 7.74 365.33 19.26 18.97 7.03 1.29 7.59 14.87 
C  3 Mid Phase 1 72.73 7.82 371.56 19.33 19.27 8.28 1.40 9.49 60.63 
C  3 End Phase 1 71.61 7.95 363.40 20.30 18.04 6.44 1.09 10.28 27.70 
C  3 End Phase 2 64.40 7.69 352.24 27.08 13.01 5.24 0.81 3.86 123.21 
D 1 Start Phase 1 63.16 8.16 430.19 13.46 32.29 17.47 1.64 6.66 63.01 
D 1 Mid Phase 1 64.86 8.37 411.88 18.74 22.53 15.93 1.76 5.90 34.46 
D 1 End Phase 1 61.28 8.12 399.49 12.75 31.71 5.71 0.68 10.65 2.54 
D 1 End Phase 2 59.91 7.79 347.37 21.00 16.56 6.04 0.70 10.71 3.87 
D 2 Start Phase 1 62.44 8.04 434.56 8.87 50.38 14.63 1.28 5.77 96.07 
D 2 Mid Phase 1 63.41 7.89 419.42 15.57 27.08 15.75 1.51 5.55 58.00 
D 2 End Phase 1 61.16 7.37 376.21 19.19 19.62 6.79 0.86 9.33 29.24 
D 2 End Phase 2 56.92 7.74 360.98 19.64 18.54 7.11 0.81 9.06 48.28 
D 3 Start Phase 1 62.32 8 428.59 10.52 41.13 16.67 1.57 6.94 121.14 
D 3 Mid Phase 1 60.92 7.81 416.25 15.50 27.22 15.95 1.58 5.23 115.41 
D 3 End Phase 1 57.86 7.86 357.10 16.98 21.51 6.70 0.81 10.24 20.55 
D 3 End Phase 2 55.96 7.19 311.70 20.78 15.01 7.60 0.93 9.05 21.88 
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5 Variation in compost microbial diversity, yield and quality over a 
12-month period 

 
It was anticipated that an annual cycle in bacterial diversity during composting, and also in the yield 
and quality of the mushroom crops might be observed, driven by changes in annual mean 
temperature (especially in the southern States, and especially if phase I composting is done in 
outdoor bunkers or windrows).and by annual variation in the quality of the wheat straw feedstocks. 
These vary from new season straw, available immediately after harvest in ca. November, through to 
weathered straw, available during the late winter months. Because the new season straw is much 
more shiny and hard, it decomposes much less readily, and composters generally plan to introduce 
the new straw to their compost mix progressively over several months rather than switching 
abruptly. 
Bacterial diversity in composts at different composting phases was determined from the database, 
and divergence from the mean is shown in Figure 5.1. The data reveal that although compost 
bacterial diversity changes during the year, there is no cyclical pattern, i.e. the diversity in January is 
not reflected by the diversity in the following January. There is also considerable variation between 
crops and between composters. 
 
Mushroom yield and quality is also very dependent on individual composters (Figure 5.2). This 
reflects different market pressures for different farms (e.g. demand from supermarkets, labour 
availability). The data reveal variations in harvesting of third flush, and also differences between 
yards in the quality of mushrooms retained. The data are presented as yield per area of compost 
(kg/m2) and not as total yield, but they nonetheless also partly reflect the experiences of mushroom 
farmers – annual cycles in demand are reflected in e.g. picking of more third flush mushrooms in 
winter, and a slightly lower yield in summer. However, these do not necessarily reflect the influence 
of compost parameters on crop yield and quality, but rather the market strategy of the individual 
farmers. 
 
The data also reflect some individual problems that were experienced in gathering the data. A 
number of samples were not received (23 samples of a total of 416 from the 4 main yards; 5%), 
including a period of nearly two months from Yard Y, due to a freezer breakdown on site (visible in 
Figure 5.2). These omissions were largely due to unintentional oversights at the participating 
composters, but are well within tolerance levels for the entire dataset.  
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Figure 5.1. Bacterial diversity changes at different composting yards over a twelve-month period. The 
mean beta diversity divergence values for crops at different stages (start-Phase I, mid-Phase I, end-
Phase I, end-Phase II) are shown in black. Because every second crop was sampled (fortnightly 
intervals between samples), each data point represents the mean of two successive crops. The 
smoothed progression of beta diversity through the year is shown in blue, with 95% confidence 
interval (grey shading). Sampling was only conducted for one 12-month period, so the data do not 
represent a multiple year average. 
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Figure 5.2.  Yield and quality parameters at different composting yards over a twelve-month period. 
Average yield for each flush is shown on the left-hand vertical axis (dark blue - flush 1, light green – 
flush 2, orange– flush 3). Crop quality is shown on the right-hand vertical axis (yellow - % premiums, 
red - % A grade, light blue - % B grade, dark green - % C grade). Each data point represents the 
average of two successive crops. Sampling was only conducted for one 12-month period, so the data 
do not represent a multiple year average.  
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6 Correlation of bacterial and fungal biomarkers with mushroom 
crop yield and quality 

 

 

Figure 6.1. Correlation of Start phase I bacterial diversity with mushroom crop yield and quality (% 
premiums). Bacterial diversity is shown as genera. Crops with high yield or quality are shown in 
green, medium high yield/quality in yellow and low yield/quality in red. 
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Figure 6.2. Correlation of Mid phase I bacterial diversity with mushroom crop yield and quality (% 
premiums). Bacterial diversity is shown as genera. Crops with high yield or quality are shown in 
green, medium high yield/quality in yellow and low yield/quality in red. 
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Figure 6.3. Correlation of end phase I bacterial diversity with mushroom crop yield and quality (% 
premiums). Bacterial diversity is shown as genera. Crops with high yield or quality are shown in 
green, medium high yield/quality in yellow and low yield/quality in red. 
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Figure 6.4. Correlation of end phase II bacterial diversity with mushroom crop yield and quality (% 
premiums). Bacterial diversity is shown as genera. Crops with high yield or quality are shown in 
green, medium high yield/quality in yellow and low yield/quality in red. 
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Table 6.1. Bacterial genera correlated with increased or decreased total mushroom yield (p<0.05) at 
individual composters. The three genera with the strongest effect are shown for each Phase and 
Composter (blank fields indicate no significant correlations). Genera in the “Overall” column are 
statistically associated with the designated effect whenever they appear. 

Composter Effect Bunker-fill mid Phase I end Phase I end Phase II Overall 

W increase  
Garciella 

Desulfohalotomaculum 
Nitrolancea 

 
UCG-012 

Mycobacterium 
Cerasibacillus 

Garciella 

X increase   
Solibacillus 

Pseudaminobacter 
Ochrobactrum 

  

Y increase  
Chryseomicrobium 

Anoxybacillus 
Pusillimonas 

Trichococcus   

Z increase   
Thermoactinomyces 

Pedobacter 
Agrococcus 

 Propioniciclava 

W decrease  
Treponema 

Ornithinimicrobium 
Chthoniobacter 

Sphingobacterium 
Taibaiella 

 

X decrease   
Corynebacterium 

Clostridium 
Aquamicrobium 

  

Y decrease 
Thermobifida 
Thermopoly-
spora 

 
Tomitella 

Streptococcus 
Fermentimonas 

  

Z decrease   
Caryophanon 

Caldanaerobacter 
Camelimonas 

 
Caryophanon 

Anaerosalibacter 
Gulosibacter 
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COMPOST BIOMARKERS
A CRYSTAL BALL FOR YIELD & QUALITY?

Button mushrooms (Agaricus 
bisporus) are grown commercially in 
Australia on a specialised compost 
that is usually prepared from wheat 
straw and poultry manure. The 
quality and yield of the mushroom 
crop depends critically on the 
quality of the compost, but the way 
compost quality is measured has 
changed very little in the last forty 
years. It depends largely on a limited 
number of chemical assays and on 
the empirical personal expertise 
developed by composters over years 
of experience. 

These measures are invaluable, but 
for effective compost management 
they need to be more strongly 
integrated with the outcomes of 
modern compost research. 

In particular, recent research 
has provided a much better 
understanding of the complex 
succession of microorganisms that 
catalyse the composting process 
(Kertesz and Thai, 2018), and there 
is now an opportunity to design 
compost quality indicators that 
correlate crop yield and quality with 
the levels of active bacteria and 
fungi  in the compost (both the total 
populations, and the populations of 
key microbial groups).

MEASURING COMPOST 
QUALITY

Indicators for compost maturity/
stability are used in many composting 
processes, including municipal 
composting and composting of 
various manures. Typical variables 
measured include water-soluble 
carbon, C/N ratio, nitrification ratio 
(ammonium:nitrate), content of humic 
material, and microbial respiration 
(measured as CO2 release). For 
composts used in the horticultural 
industry, plant related variables such 
as seed germination and seedling 
survival are sometimes also included. 

Usually a combined “compost maturity 
index” (CMI) is generated, which is 
composed of several factors (e.g. the 
Solvita compost test, which combines 
values for NH3 and CO2 production 
(https://solvita.com/compost/)). 

Since the aim of municipal or manure 
composting is to stabilise nutrients 
in a form that does not damage the 
environment, there are often legal 
requirements for “compost stability” 
that must be met before compost is 
used, and these form a minimum list 
for a “compost quality index” for these 
composts (Bernal et al., 2017).

For mushroom composting, the 
criteria are rather different. The most 
important purpose of a mushroom 
compost quality indicator is to 
determine whether the compost will 
afford high yield and quality of 
mushrooms, rather than to measure 
stability of the compost. Methods to 
correlate physicochemical compost 
and casing parameters with mushroom 
yield have been reported in the 
past, but have generally been too 
complex to find great take-up in 
the industry. One published method, 
for example, can predict yields 
with >90% accuracy, but requires 
measurements of compost pH, 
dry matter, ammonia, carbon, ash, 
copper, iron, and sodium in order 
to do so (Sharma and Kilpatrick, 
2000). A second model is slightly less 
demanding (it only requires values 
for compost moisture, C/N ratio, pH 
and total nitrogen, and casing water 

holding capacity, porosity, pH and 
electrical conductivity), but it also 
provides less accurate predictions 
of yield (Zied et al., 2011). Clearly, 
the number of parameters required 
for yield prediction in these 
studies make them impractical for 
composters to use routinely, and the 
number of crops evaluated in these 
studies was relatively low. 

Infrared spectroscopy of Phase 
2 compost has also been used as 
a rapid method to predict yield. 
Compost absorbs UV or near- or 
mid-infrared (NIR/MIR) light in a 
way that is related to its chemical 
and microbial composition, and this 
has been reported to explain up 
to 84% of yield variation (Sharma 
et al., 2005). In the past, these 
methods have required expensive 
and complex instrumentation, but 
the recent development of hand-
held spectrometers may make this 
technique useful in the future, and 
the newest instruments cost only 
a few hundred dollars. Compost 
NIR spectra change in a predictable 
manner during composting, but 
correlation of the measurements 
with e.g. cellulose or lignin content 
varies greatly between yards, and 
this is likely also to apply to yield 
predictions. Notably, a recent 
comprehensive review of mushroom 
composting and cultivation methods 
(Zied and Pardo-Giménez, 2017) 
does not mention mushroom 
compost quality indicators, 
confirming that more work is needed 
in this field.

WHY ARE COMPOST 
BIOMARKERS NEEDED?

Achieving consistency of compost is 
an ongoing issue for the industry. 
All growers have experienced 
fluctuations in availability and 
quality of wheat straw and chicken 
manure that influenced crop yield 
and quality. Compost made with new 
season straw, for example, often 
takes longer to reach maturity, and 
gives reduced crop yields. More 
frustratingly, occasional compost 
batches give lower mushroom 
yields which growers are at a loss 
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to understand or remedy, despite 
years of experience. Low profit 
margins in the industry mean that 
even slight yield reductions are 
economically painful. The ability to 
predict potential yields earlier in 
the production process will allow 
growers to manage composting 
conditions, inputs and the growing 
environment more effectively, and 
take timely remedial action. 

Targeted biomarkers could provide:

• a stop/go signal for compost 
crops, i.e. a signal that yield 
from a particular batch of 
compost is likely to be poor, 
allowing compost crops to be 
blended or halted if necessary; 

• a physical management signal, 
e.g. that a particular compost 
crop may need a different level 
of treatment (e.g. temperature, 
time, water); 

• a biological management signal, 
e.g. presence of a reduced 
population of an essential 
microbe, or elevated population 
of a potential mushroom 
pathogen, signalling that 
effective composting may 
require bioaugmentation or 
other treatment. 

These signals are only useful, 
however, if the methods used 
are easy for the grower to carry 
out routinely and if they provide 
feedback in a useful timeframe for 
composting (see Box below). 

THE AUSTRALIAN COMPOST 
BIOMARKERS PROJECT

The Biomarkers project is supported 
by Hort Innovation through the levy 
project Developing a database of bio-
markers for compost quality control to 
maximise mushroom production yield 
(MU17006). 

The project is measuring the variation 
in compost microbe populations 
throughout composting at a range 
of Australian mushroom composting 
facilities and correlating this with the 
mushroom yield and quality obtained 
with each compost. The data will 
be used to develop an Australian 
Mushroom Industry Database of 
compost bio-markers, that can be 
used to assist growers to maximise 
mushroom yield and productivity. In 
particular, the project will: 

• Conduct a global scan for 
novel and innovative options 
using biomarkers  to maximise 
mushroom yield via mushroom 
compost quality control.

• Compare microbial diversity 
and dynamics at a range of 
composting facilities across the 
Australian mushroom industry, 
studying every second crop 
over a continuous period of one 
year to develop a database of 
unprecedented size.

• Establish a correlation between 
microbial populations at these 
composting facilities and the 
yield/quality of the resultant 
mushroom crops.

• Develop fact sheets and 
calculators to help Australian 
mushroom growers to use the 

microbial load database to 
improve yield and manage 
composting.

Many composters and growers have 
experimented with different ways to 
predict yields over the years. Many 
of these attempts are documented 
in industry magazines and reports, 
but others have only been passed 
on anecdotally and the project work 
will look to tap into this wealth of 
empirical experience. The project 
has already been discussed with 
several composting facilities, and 
the project team would be delighted 
to receive information outlining any 
experiences or suggestions. 
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