
Final Report 

 

 

Understanding apple and pear production systems 
in a changing climate 

 
Heidi Parkes 

The Department of Agriculture and Fisheries (DAF) 

 
 

Project Number: AP12029 



AP12029 
 
 

This project has been funded by Horticulture Innovation Australia 
Limited using the Apple and Pear Industry levy and funds from the 
Australian Government. Additional financial support was contributed 
by Department of Agriculture and Fisheries (Qld), Department of 
Economic Development, Jobs, Transport and Resources (Vic), 
Department of Agriculture and Food Western Australia, Pomewest 
(WA) and University of Tasmania. 

Hort Innovation makes no representations and expressly disclaims all 
warranties (to the extent permitted by law) about the accuracy, 
completeness, or currency of information in Understanding apple and 
pear production systems in a changing climate. 

  
Reliance on any information provided by Hort Innovation is entirely 
at your own risk. Hort Innovation is not responsible for, and will not 
be liable for, any loss, damage, claim, expense, cost (including legal 
costs) or other liability arising in any way (including from Hort 
Innovation or any other person’s negligence or otherwise) from your 
use or non-use of Understanding apple and pear production systems 
in a changing climate, or from reliance on information contained in 
the material or that Hort Innovation provides to you by any other 
means. 

 
 

ISBN 978-0-7341-4336-5 

Published and distributed by: 
Hort Innovation 
Level 8, 1 Chifley Square 
Sydney NSW 2000 
Tel:  (02) 8295 2300 
Fax:  (02) 8295 2399 
 
© Copyright 2017 
   
   
 



2 
 

Contents 
 

 
Summary ............................................................................................................................................ 5 

Keywords ........................................................................................................................................... 6 

Key personnel ..................................................................................................................................... 6 

Introduction........................................................................................................................................ 7 

Project objectives ................................................................................................................................ 7 

General methodology .......................................................................................................................... 9 

Research methodology ..................................................................................................................... 9 

Development and extension methodology ....................................................................................... 11 

Outputs ............................................................................................................................................ 13 

Grower publications ....................................................................................................................... 13 

Grower workshops ......................................................................................................................... 13 

Websites and tools ........................................................................................................................ 13 

Technical working group meetings .................................................................................................. 13 

Industry surveys ............................................................................................................................ 14 

Industry articles............................................................................................................................. 14 

Industry conferences ..................................................................................................................... 15 

Stakeholder and grower engagement .............................................................................................. 16 

Reports ......................................................................................................................................... 17 

Media items ................................................................................................................................... 17 

Project web pages, factsheets and online information ...................................................................... 18 

Scientific conferences..................................................................................................................... 19 

Datasets ....................................................................................................................................... 19 

Post-graduate student projects ....................................................................................................... 19 

Outcomes ......................................................................................................................................... 20 

Historical climate trends and future scenarios .................................................................................. 20 

Impacts of warming autumn, winter and spring temperatures on flowering and options for adaptation

 .................................................................................................................................................... 24 

Impacts of increased frequency of extreme heat days on fruit quality and options for adaptation ....... 32 



3 
 

Impacts of warming temperatures on yield ...................................................................................... 37 

Communication, development and extension ................................................................................... 37 

Evaluation and Discussion ................................................................................................................. 39 

Measuring project impact ............................................................................................................... 39 

Effectiveness of project activities in delivering project outputs and achieving intended outcomes ....... 40 

Feedback on activities and quality and usefulness of project outputs ................................................ 41 

Key learnings................................................................................................................................. 42 

Recommendations............................................................................................................................. 46 

Industry ........................................................................................................................................ 46 

Extension and communications ....................................................................................................... 47 

Scientific ....................................................................................................................................... 47 

Scientific Refereed Publications .......................................................................................................... 50 

Intellectual Property/Commercialisation .............................................................................................. 51 

Acknowledgements ........................................................................................................................... 52 

Appendices ....................................................................................................................................... 53 

References ....................................................................................................................................... 54 

 

 

Table of figures 

 
Figure 1. Research sites were located in Applethorpe (Qld), Shepparton (Vic), Manjimup (WA) and 

Huonville (Tas). Orange (NSW) and Mt Barker (SA) were included in the climate data analysis. ............. 12 

Figure 2. Annual anomaly in accumulation of chill portions (1 Mar to 31 Aug). Anomalies are the 

difference between the yearly value and a base period of 1981 to 2010. The black line is an 11-year 

moving average. ............................................................................................................................... 21 

Figure 3. Annual anomaly in average number of days where maximum temperature exceeds 35° C. 

Anomalies are expressed as the difference between the yearly value and a base period of 1981 to 2010. 

The black line is an 11-year moving average. ..................................................................................... 22 

Figure 4. Chill accumulation in Shepparton, Applethorpe and Manjimup in 2012 to 2015. Number in 

brackets is the total chill portions received up to 31 Aug. .................................................................... 24 

Figure 5. Green tip (green) and full bloom (pink) dates for apple cultivars in Applethorpe, Shepparton and 

Manjimup. Data is the average of observations from 2012 to 2015 with bars indicating the confidence 

interval. ............................................................................................................................................ 25 

Figure 6. The Chill-Overlap Model for flowering in apple. Cr is minimum chill required for flowering, Co is 



4 
 

the maximum additional chill that will reduce the heat requirement. Hr is the heat required when Co chill 

is accumulated, and Ho is the maximum possible heat requirement for flowering. (Redrawn from 

Darbyshire et al., 2016). .................................................................................................................... 28 

Figure 7. Variable bud burst and flowering in 'Cripps Pink', Manjimup, spring 2014. .............................. 30 

Figure 8. Green tip, first flower and full bloom in Gala apples treated with and without 'dormancy 

breaking' sprays Dormex®, Waiken® and Erger in Huonville, Applethorpe and Manjimup in 2015. ........ 31 

Figure 9. Fruit surface temperature (°C) recordings and related air temperatures (°C). Necrosis and 

browning fruit surface temperature thresholds represent 52 and 47.8 °C respectively. Figure sourced 

from Darbyshire et al. 2015. .............................................................................................................. 33 

Figure 10. Western Australian netting demonstration site at the Lyster Matijari Orchard, Manjimup ....... 36 

Figure 11. Fruit surface temperature (FST) and air temperature measured in the black net, white net and 

no net rows at the Lyster Matijari orchard (Manjimup) from February to mid-March 2014...................... 36 

 

Table of tables 

 
Table 1. Average chill portions (1 Mar to 31 Aug) for 2030 and 2050 using a minimum to medium 

(RCP4.5) and worst (RCP8.5) case scenario. The average is of 30 years with the lowest and highest chill 

portions in brackets. .......................................................................................................................... 23 

Table 2. Chilling requirements of apple cultivars and a crab apple polliniser cultivar measured in chill 

portions, chill units and chill hours. .................................................................................................... 27 

Table 3. Average date of full bloom for ‘Cripps Pink’ apple in 2030 and 2050 using a minimum to medium 

(RCP4.5) and worst case scenario (RCP8.5) modelling approach. ......................................................... 29 

Table 4. Distribution of potential damage days in January for sites in Australia’s growing regions for 10th, 

50th and 90th percentiles of data. Table sourced from Darbyshire et al. 2015. ..................................... 33 

Table 5. Average sunburn browning risk (percentage of days in the January to February period) for ‘Royal 

Gala’ apples grown at sites across Australia, with and without netting. ................................................. 35 

Table 6. Barriers to communication and extension around climate change adaptation ........................... 41 

 
 



5 
 

Summary 
The objective of this project was to reduce the vulnerability of the Australian apple and pear industry to 

climate change by: investigating the potential impacts of a changing climate on winter chill, flowering, 

fruit sunburn and yield; exploring the effects of adaptation such as netting and dormancy-breaking 

products; and developing and extending appropriate adaptive responses to industry. The project used a 

broad range of research and technology transfer activities encompassing field observational data 

collection, controlled environment experimentation, biophysical modelling, website development, 

communication and extension.  

Australia has undergone a consistent warming trend since 1910, however, analysis of historical climates 

undertaken in this project indicated that the experience of climate change has been different in each 

pome fruit growing region. For example, milder pome fruit growing regions of Australia have experienced 

a decline in annual winter chill accumulation since 1968, while the colder regions of Huonville and Orange 

have not changed. In modelling studies of future climate scenarios, warmer locations were projected to 

experience a reduction in winter chill of more than 20% by 2050, with a decline of less than 10 to 14% 

projected for the coldest production areas over the same period.  

Flowering observations from 2012 to 2015 indicated that low winter chill in Manjimup was associated with 

greater variability in flowering dates between seasons, cultivars and individual trees, and irregular and 

protracted flowering across most apple cultivars, relative to Applethorpe and Shepparton. The variable 

pattern of flowering observed in Manjimup was likely the result of mild winter conditions and inadequate 

chilling for some cultivars. Use of climate analogues and modelling analyses suggest that milder winter 

growing regions of Australia are likely to experience symptoms of inadequate chilling with increasing 

frequency in future years. 

Projections from the chill-overlap model for timing of full bloom in ‘Cripps Pink’ apple in 2030 and 2050 

projected an earlier full bloom date on average at high chill locations in 2050, and a later full bloom date 

at the milder winter locations by 2030, with flowering dates delayed by more than a week in 2050. Trials 

with dormancy-breaking sprays demonstrated that they are likely to be a viable adaptation tool for some 

cultivars in lower winter chill years, but matching cultivars with climate is the preferred adaptation option. 

Results from the climate modelling showed that by 2030, all pome fruit growing regions will experience 

an increase in the average number of extreme heat days during the summer growing season. Netting will 

reduce the risk of sunburn damage, as air temperature thresholds for damage of fruit under netting were 

shown to be higher than thresholds for fruit without netting. Findings from the Western Australian netting 

demonstration site showed little difference in air temperature conditions, winter chill or flowering dates 

under the white netted, black netted and non-netted orchard blocks. Black and white netting were 

equally effective in reducing fruit surface temperatures over the late summer period, compared with the 

no net apples. 

The project highlighted the need for detailed information to enable growers to match apple and pear 

cultivars with suitable growing climates, including matching chilling requirements with winter chill and 

heat tolerance with summer temperatures. Comprehensive guidelines on orchard practices for managing 

extreme heat (including tree canopy structure, use of evaporative cooling, netting types, plant growth 

regulators and stress reduction chemicals) are also recommended.  

It is clear from the project outcomes that climate change will add significant variability into the pome fruit 

production system with respect to flowering and fruit quality. Australian growers are used to dealing with 

some level of climate variability and it seems likely that impacts on flowering and fruit quality will be 

within the range of grower experience up to around 2030, but that by 2050 growers will be operating 

outside of current experience. This will present challenges for the Australian industry in the consistency of 

supply and in maintenance of the uniform orchard blocks. 

A series of recommendations were developed, along with a list of significant research gaps, to assist the 

Australian apple and pear industry reduce the risks associated with climate variability and climate change. 
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Introduction 
Australia’s climate has warmed since 1910, and is likely to continue warming with more hot days and 

fewer cold days expected in the future (State of the climate, 2016). Research has broadly identified a 

range of potential impacts of climate change on the productivity and profitability of the Australian apple 

and pear industry including inadequate winter chilling, increased fruit sunburn and changes to the upper 

limit of pome fruit productivity (Darbyshire et al., 2013b; Putland et al., 2011). However, the nature and 

timing of these potential impacts in different growing regions across Australia remains unclear. 

Understanding climate change impacts is essential for the timely implementation of appropriate 

adaptation strategies (Cobon et al., 2009). 

Future changes in climate are predicted to result in reduced winter chilling in many apple and pear 

growing regions of Australia (Darbyshire et al., 2013b; Hennessy et al., 1995). It is not yet clear what the 

impact of this will be on the timing and quality of bud dormancy release and flowering in commercial 

pome fruit cultivars, and therefore the potential impacts on productivity. Advancement in flowering with 

increased historical temperature has been observed in temperate fruit trees globally (Legave et al., 

2013); however, effects of recent warming on flowering in Australian pome trees are less obvious 

(Darbyshire et al., 2013a). Options for adaptation to lower winter chill include appropriate cultivar 

selection and the use of plant growth regulators; however, current understanding around cultivar chilling 

requirements and the use of dormancy-breaking sprays to compensate for a lack of winter chill is poor.  

The risk of fruit sunburn damage is likely to increase under future climates and associated rising summer 

temperatures. Predictions regarding changes to sun damage risk and evaluation of adaptation options are 

therefore important for future planning. In Australia, apple growers currently estimate typical losses to 

vary from 6 to 30%, depending on season and fruit cultivar (Lolicato, 2011).  

Netting has been identified as a potential climate change adaptation strategy to reduce fruit exposure to 

solar radiation and hence reduce sunburn damage, while also providing protection from hail events. 

Practical questions remain on the use of hail netting, particularly in warm growing regions, including the 

effect of different types of netting (weave density and colour) on temperature, fruit quality and yield. The 

effectiveness of netting as an adaptation strategy to reduce the risk of sunburn browning under predicted 

climate change is also unknown. 

Project objectives 
The broad objective was to reduce the vulnerability of the Australian apple and pear industry to climate 

change through, 1) investigation of the overarching research question ‘What are the potential impacts of 

a changing climate on apple and pear production in Australia and how can the industry adapt to minimize 

the risks?’ and, 2) developing and extending appropriate adaptive responses to industry.  

Specific objectives for the research component of the project were to: 

1. Develop climate change scenarios for pome fruit growing regions of Australia in 2030 and 2050, 

including the likely impact of climate change on winter chill and extreme heat.  

2. Understand how changes in autumn, winter and spring temperatures might impact the timing 

and quality of flowering in cultivars of apple and pear.  
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3. Identify adaptations to manage any negative effects of climate change on flowering.  

4. Understand how changes in the frequency of extreme heat days might impact on the incidence of 

sunburn in pome fruit and the effectiveness of netting as an adaptation strategy. 

5. Understand how different colours of netting impact on the orchard environment, fruit yield and 

quality.  

6. Understand how the changing climate might impact the yield potential of apples.  

The development and extension components of the project were targeted at the Australian apple and 

pear industry. Target groups were apple and pear growers, industry consultants, Apple and Pear Australia 

Limited (APAL) and temperate fruit tree researchers. Specific objectives of this component were to: 

1. Facilitate greater understanding of how the climate is likely to change by 2030 and 2050 in apple 

and pear growing regions of Australia, how this might impact on apple and pear production, and 

potential adaptation strategies to reduce the associated risks. 

2. Increase knowledge and skills to enable informed decision-making around climate change 

adaptation, and orchard investment and planning, based on scientific evidence.  

3. Build a connected and collaborative approach between research partners, funding bodies, 

industry and growers around managing and adapting to climate change. 
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General methodology 
The objectives were investigated through a broad range of research and technology transfer activities 

encompassing field observational data collection, controlled environment experimentation, biophysical 

modelling, website development, written and oral communication and extension. The project combined 

research of immediate adaptive responses to current climate risks, with long-term climate change impacts 

and adaptation. The general methodological approach and associated activities undertaken for each of 

the stated project objectives are described in this section. Details of specific methods are given in the 

appropriate appendices, as indicated in the text.  

Research methodology 

The approach was to validate and refine models of flowering time, fruit surface temperature and yield 

potential, and use them in conjunction with regional climate projections to model the effects of the 

changing climate on apple and pear production systems, and the effectiveness of specific adaptation 

strategies. Climate analogues were also investigated as an alternative approach to understanding climate 

change impacts and adaptation.  

1. Develop climate change scenarios for pome fruit growing regions of Australia in 2030 and 

2050, including the likely impact of climate change on winter chill and extreme heat   

Future climate scenarios were constructed for two representative concentration pathways (RCPs), RCP4.5 

(minimum to medium case scenario) and RCP8.5 (worst case scenario), to represent a plausible range of 

future climates (Appendix 1). RCPs are greenhouse gas concentration trajectories adopted by the 

Intergovernmental Panel on Climate Change in its fifth Assessment Report in 2014 (a detailed description 

of these is given in Appendix 1). Scenarios were developed for 2030 and 2050 to support the mid to long-

term orchard decision-making process. Trees planted in 2017 will be in their 13th leaf in 2030, the height 

of production, and therefore planting decisions made now will impact orchard profitability in 2030. 

Climate projections were not made beyond 2050 due the high degree of climate uncertainty associated 

with long-term projections.  

Climate scenarios were expressed in terms of relevant horticultural metrics (chill portions and number of 

sunburn browning risk days) rather than simply as mean temperature changes, to enable better 

understanding of how warming temperatures might impact pome fruit production.  

Winter chill was calculated in chill portions using the Dynamic Model (Erez et al., 1990; Fishman et al., 

1987). This is the current ‘best-practice’ model and has been shown to perform better than other models 

for calculating winter chill, particularly in mild winter climates such as Australia (Luedeling et al., 2011). 

2. Understand how changes in winter and spring temperatures might impact the timing and 

quality of flowering in cultivars of apple and pear 

Detailed baseline data sets for temperature, bud burst and flowering were collected from three 

climatically distinct pome fruit growing regions of Australia (Applethorpe, Queensland; Manjimup, 

Western Australia; Shepparton, Victoria, Figure 1) for apple and pear cultivars and their pollinisers from 

2012 to 2015. Phenology observation and collection methodology was standardised across locations 

making this dataset unique in Australia.  

The data set was used to assess the variation in bud burst and flowering time across locations, seasons 
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and cultivars (Appendix 2), and to validate a phenology model (chill overlap model (Darbyshire et al., 

2016)) for prediction of flowering time in apple now and under future climates (Appendix 1). 

Climate analogue analysis involves a detailed comparison between locations, where the current climate of 

one location is similar to the projected future climate of the location of interest. This approach was 

investigated using Stanthorpe as a case study, to predict impacts of climate change on pome fruit 

flowering in Stanthorpe and to identify possible methods for adaptation (Appendix 3).  

3. Identify adaptations to manage any negative effects of climate change on flowering 

Forced bud experiments using controlled environment conditions were undertaken to determine cultivar 

chilling requirements, for use by industry in selection of suitable cultivars for different winter chill 

climates. Methods for collecting bud burst and flowering records were developed for growers to use for 

assessing cultivar performance in their local climate (Treeby et al., 2017a). 

A one-year trial was conducted in three locations (Applethorpe, Queensland; Manjimup, Western 

Australia; Huonville, Tasmania) to determine the efficacy of using dormancy-breaking sprays in Gala as 

an adaptation to low winter chill years (Appendix 4).  

Potential adaptations were also identified through the capture of grower experiences at national grower 

workshops and industry conferences.   

4. Understand how changes in the frequency of extreme heat days might impact on the incidence 

of sunburn in pome fruit and the effectiveness of netting as an adaptation strategy 

Two methodological approaches were taken using weather and fruit surface temperature data collected 

from two adjacent ‘Royal Gala’ sites in Shepparton, Victoria, one netted and one non-netted site. The first 

approach was to determine minimum air temperature thresholds for ‘Royal Gala’ apples grown with and 

without net, with potential to lead to sunburn damage under current climates (Appendix 5). Once 

established, these minimum air temperature thresholds were used to investigate the frequency of days 

exceeding these threshold air temperatures in current and future climates. The future sunburn risk and 

the effectiveness of netting in reducing this risk, was determined for growing locations around Australia 

for 2030 and 2050 (Appendix 1 and 7).  

The second approach was to validate the thermodynamic Smart-Sinclair model for prediction of fruit 

surface temperature (Appendix 6).  

5. Understand how different colours of netting impact on the orchard environment, fruit yield 

and quality 

A netting demonstration site was established over a block of ‘Cripps Pink’ trees in Manjimup, Western 

Australia to expand on results from existing studies on the effects of netting on air temperature, relative 

humidity, wind and solar radiation (Darbyshire et al., 2015; Middleton et al., 2002) and to compare the 

effects of black and white net on the orchard environment, flowering, fruit yield and quality (Appendix 8).  

6. Understand how the changing climate might impact the yield potential of apples   

An apple physiological model, MaluSim (Lakso et al., 1990), was used to understand the effects of 

predicted climate change on net carbon exchange of apples and the upper limit of apple production (yield 
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potential). The model was evaluated for ‘Royal Gala’ with regard to prediction of apple yield under 

current Australian conditions in netted and non-netted orchard sites, and yield was predicted under 

warmer future climate conditions (Appendix 9). 

Development and extension methodology 

Extension and research activities were coordinated and conducted side-by-side to encourage the flow of 

information between growers, industry representatives, extension officers and researchers throughout 

the project, with industry feedback continuously informing the research.   

The technology transfer activities undertaken as part of the extension component are outlined under each 

of the following objectives. 

1. Facilitate greater understanding of how the climate is likely to change by 2030 and 2050 in 

apple and pear growing regions of Australia, how this might impact on apple and pear 

production, and potential adaptation strategies to reduce the associated risks. 

Multiple activities were undertaken to provide information to, and obtain feedback from, the apple and 

pear industry. A review of available climate change information relevant to Australian apple and pear 

growers was conducted at the project start, to identify information needs. A grower survey was 

performed to gain insight into grower attitudes and knowledge in regards to climate change and its 

impacts.  

Communication and extension was undertaken throughout the project and included two years of national 

grower workshops (Appendix 10), regular publications in industry magazines and websites, presentations 

at industry conferences, field days and seminars, dedicated project web pages (APAL and Horticulture 

Industry Network (HIN)) and general media items.   

Climate change information specific to Australia’s apple and pear industry was published in a series of 

three grower publications at the conclusion of the project to communicate key project findings as well as 

important climate change information for the industry generally (Treeby et al., 2017a; Treeby et al., 

2017b; White et al., 2017).  

2. Increase knowledge and skills to enable informed decision making around climate change 

adaptation and orchard investment and planning based on scientific evidence 

The grower publications and winter chill website were designed to provide practical information to 

growers for use in every day decision making and for long-term strategic planning.    

3. Build a connected and collaborative approach between research partners, funders, industry 

and growers around managing and adapting to climate change 

Relationships between stakeholders were established, maintained and developed through:  

- Regular project teleconferences and face-to-face meetings.  

- Close links with the University of Melbourne project ‘Crossing the threshold: adaptation 

tipping points for Australian fruit trees’ undertaken within the Primary Industries Climate 
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Challenges Centre (PICCC)1. 

- Meetings with APAL staff at the head office in Melbourne, at conferences or via phone hook-

up. 

- Informal links with other apple and pear industry research programs such as the PIPS 

program, as well as with researchers and industry representatives from other horticultural 

industries, for example cherries and almonds. 

- Establishment of the netting demonstration site in Western Australia.  

- Data collection trials conducted on grower properties which provided avenues for informal 

engagement growers. 

- Involvement and participation in industry conferences and events.  

- Organisation and participation in national grower workshops.  

- Involvement with the Climate Change Research Strategy for Primary Industries (CCRSPI). 

- Involvement of post-graduate students and work experience students in project activities. 

 

                                   

Figure 1. Research sites were located in Applethorpe (Qld), Shepparton (Vic), Manjimup 

(WA) and Huonville (Tas). Orange (NSW) and Mt Barker (SA) were included in the climate 

data analysis.  

 

                                                
1 http://www.piccc.org.au/research/project/440 
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Outputs 

Grower publications  

Treeby, J., Goodwin, I., MurphyWhite, S., Darbyshire, R., White, N., McClymont, L., Richards, S., 
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Department of Agriculture and Fisheries, Queensland.  

Treeby, J., Goodwin, I., MurphyWhite, S., Darbyshire, R., White, N., McClymont, L., Richards, S., Webb, 

L., Erwin, T. and Parkes, H. 2017. Netting for heat – what is there to know? Department of 

Agriculture and Fisheries, Queensland.  

White, N. Parkes, H. and Treeby, J. 2017. Future climates in pome fruit orchards – what is there to 

know? Department of Agriculture and Fisheries, Queensland.  

Grower workshops 

Heidi Parkes, Jenny Treeby and Ian Goodwin presented “climate change impacts and adaptation research 

for the pome fruit industry” at Fruit Grower Victoria’s end of season review, Mooroopna, Vic, 12 

May 2014. http://www.hin.com.au/associations/fruit-growers/fgv-end-of-season-review 

http://www.hin.com.au/resources/extreme-heat-powerpoint-may-2014 

http://www.hin.com.au/resources/apples-and-pears-in-a-changing-climate-powerpoint-may2014 

Heidi Parkes, Neil White and Clinton McGrath presented an “apple climate change workshop” at 

Applethorpe Research Facility, Qld, 23 July 2014.  

Heidi Parkes and Susie MurphyWhite presented “apples and pears in a changing climate” at an orchard 

walk in Manjimup, WA, 1 October 2014. http://www.hin.com.au/associations/apples-and-
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Heidi Parkes presented a “winter chill and flowering” workshop for the Perth Hills Orchard Improvement 
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Websites and tools 

White, N. and Parkes, H. 2017. Winter chill and growing degree day website: an interactive tool to 

calculate and interpret local chill and growing degree day accumulation. https://hort-

science.shinyapps.io/ChillCalculator/ 

Technical working group meetings 

Queensland technical working group meeting, facilitated by Clinton McGrath, Applethorpe Research 
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South Australian technical working group meeting, facilitated by Jenny Treeby and Paul James (Lenswood 

Co-op), Lenswood, SA, April 2013.  

http://www.hin.com.au/associations/fruit-growers/fgv-end-of-season-review
http://www.hin.com.au/resources/extreme-heat-powerpoint-may-2014
http://www.hin.com.au/resources/apples-and-pears-in-a-changing-climate-powerpoint-may2014
http://www.hin.com.au/associations/apples-and-pears/pit-stop-wa-for-the-national-roadshow
http://www.hin.com.au/associations/apples-and-pears/pit-stop-wa-for-the-national-roadshow
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Victoria), Shepparton, Vic, October 2013. 
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A nation-wide survey of apple and pear growers was developed and coordinated by Jenny Treeby (based 
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Treeby and Susie MurphyWhite to gauge grower understanding and perceptions of winter chill. 
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Outcomes 

Historical climate trends and future scenarios 

Historical trends in average temperatures, winter chill and heat days 

(Appendix 1) 

Australia has undergone a consistent warming trend since 1910 (State of the climate, 2016). In pome 

fruit growing regions across Australia this changing climate has been experienced in different ways at the 

local level. Changes in average minimum and maximum temperatures experienced in autumn/winter and 

spring/summer since 1968 differ between regions (appendix 1). The milder growing regions of 

Applethorpe, Manjimup and Mt Barker have experienced a decline in the number of chill portions over this 

period, while Shepparton has seen a small reduction in winter chill and the colder regions of Huonville 

and Orange have not changed (Figure 2). Increases in the number of extreme heat days have been 

experienced in Shepparton and Mt Barker, while the last seven years in Manjimup have been above the 

long-term average (Figure 3). 
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Figure 2. Annual anomaly in accumulation of chill portions (1 Mar to 31 Aug). Anomalies are the difference 

between the yearly value and a base period of 1981 to 2010. The black line is an 11-year moving average.
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Figure 3. Annual anomaly in average number of days where maximum temperature exceeds 35° C. 

Anomalies are expressed as the difference between the yearly value and a base period of 1981 to 2010. 

The black line is an 11-year moving average.
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Climate projections for average winter chill and heat days  

(Appendix 1) 

Climate projections were developed for minimum to medium (RCP4.5) and worst case (RCP8.5) scenarios 

for 2030 and 2050 for each of the pome fruit growing regions. Winter chill accumulation declined at all 

sites in 2030 and 2050 under both scenarios. The greatest declines were in the milder growing regions of 

Applethorpe and Manjimup (greater than 20% in 2050) and the smallest declines in Huonville and Orange 

(around 5% in 2030 and less than 15% in 2050) (Table 1).    

By 2050, growers will be managing orchards under a different climatic environment. For example, in 

Applethorpe, a low chill year is currently around 60 chill portions. This will be a good year in 2050 and 

the worst years will be outside the existing range of experience.   

 

Table 1. Average chill portions (1 Mar to 31 Aug) for 2030 and 2050 using a minimum to 

medium (RCP4.5) and worst (RCP8.5) case scenario. The average is of 30 years with the 

lowest and highest chill portions in brackets. 

Average chill 

portions Present 

2030 2050 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Applethorpe 72 (62-83) 63 (48-75) 60 (44-73) 56 (41-69) 51 (36-65) 

Shepparton 84 (73-93) 75 (63-85) 74 (62-86) 71 (58-81) 67 (57-79) 

Manjimup 67 (55-82) 57 (43-76) 55 (42-75) 50 (36-72) 47 (33-68) 

Huonville 105 (94-113) 98 (81-112) 97 (78-110) 93 (74-105) 90 (71-104) 

Orange 100 (90-110) 94 (85-104) 93 (82-101) 90 (81-99) 87 (78-94) 

Mount Barker 84 (67-93) 74 (55-88) 73 (53-88) 70 (53-84) 65 (47-80) 

 

The climate projections for 2030 and 2050 show that all pome fruit regions across Australia can expect to 

experience an increase in the number of extreme heat days during the growing season, with the greatest 

impacts likely to be in regions such as Shepparton, with hot summer climates (data not shown). Impacts 

on the risk of sunburn browning in apples are described in the section ‘Potential impact of an increased 

frequency in extreme heat events on the incidence of sunburn, and the effectiveness of netting as an 

adaptation strategy’ on p34.   
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Impacts of warming autumn, winter and spring temperatures on flowering and 

options for adaptation 

Understanding relationships between temperature and flowering   

1. Variation in flowering of pome fruit trees across Australia 

(Appendix 2) 

Differences in the pattern of chill accumulation (Figure 4) were accompanied by variability in the timing 

and pattern of green tip and flowering between locations and between years (Figure 5). Green tip and full 

bloom dates were more variable between years, cultivars and individual trees in Manjimup compared with 

Applethorpe and Shepparton, and trees consistently displayed a more protracted pattern of flowering 

(Figure 5). Delayed and uneven flowering are symptoms of inadequate chill and it is likely that the 

observed patterns of bud burst and flowering in Manjimup were in response to the mild winter conditions 

experienced in that location in 2012 to 2014.  

 

Figure 4. Chill accumulation in Shepparton, Applethorpe and Manjimup in 2012 to 2015. 

Number in brackets is the total chill portions received up to 31 Aug. 
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Figure 5. Green tip (green) and full bloom (pink) dates for apple cultivars in Applethorpe, 

Shepparton and Manjimup. Data is the average of observations from 2012 to 2015 with bars 

indicating the confidence interval. 

Applethorpe 

Shepparton 

Manjimup 
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2. Chilling requirements 

A collection of apple chilling requirements in chill portions, chill units and chill hours were produced for 

the mild climatic region of Applethorpe, Queensland, Australia (Table 2).  

The chilling requirements measured were higher across a number of cultivars when compared with 

previously published thresholds (Ghariani et al., 1994; Hauagge et al., 1991). For example, Darbyshire et 

al. (2016) estimated a chilling requirement of 34 chill portions for ‘Cripps Pink’, notably lower than the 

chilling requirement of 73 chill portions calculated here. Comparison of chilling requirements between 

studies is problematic due to the use of vastly different methodologies for threshold determination 

(Dennis, 2003). Research to understand the genetic basis of progression through the phases of dormancy 

is needed to enable accurate definition of cultivar chilling requirements (Cooke et al., 2012). 

Regardless of these gaps in knowledge, the chilling requirements measured using the forced bud 

methodology can be used to put apple cultivars into groups with low (‘Cripps Red’, ‘Manchurian’ crab 

apple), medium (‘RS103-110’, ‘Granny Smith’, ‘Cripps Pink’, ‘Kalei’) and higher chilling requirements 

(‘Galaxy’, Fuji’, ‘Hi-Early’). These groupings provide practical benefit to industry by enabling growers to 

make more informed cultivar and pollinizer choices at planting, particularly when considering projected 

changes to future climate.  

A draft manuscript titled ‘chilling requirements of apple varieties grown in mild Australian winter 

conditions’ details this work, and has been prepared for submission to the journal HortScience. 

 



27 
 

Table 2. Chilling requirements of apple cultivars and a crab apple polliniser cultivar measured in chill portions, chill units and chill 

hours. 

Cultivar Year Dynamic (CP) mean±sd CV(%) Utah (CU) mean±sd CV(%) Chill Hours (CH) mean±sd CV(%) 

Cripps Red 2014 54.9 57±2.9 5.1* 947 976±40.3 4.1 694 662±44.5 6.7 

 

2015 59 

  

1004 

  

631 

  Manchurian 2014 58.5 61±3.6 5.9 1016 1031±21.6 2.1* 748 724±33.2 4.6 

 

2015 63.6 

  

1046.5 

  

701 

  RS103-110 2014 68.7 70.8±2.9 4.1 1207 1186±29.3 2.5 845 838±10.6 1.3* 

 

2015 72.8 

  

1165.5 

  

830 

  Granny Smith 2014 72.9 72.8±0.1 0.1* 1312 1239±103.6 8.4 875 852±31.8 3.7 

 

2015 72.8 

  

1165.5 

  

830 

  Cripps Pink 2014 72.9 73.3±0.6 0.9* 1312 1242±99 8 875 856±27.6 3.2 

 

2015 73.8 

  

1172 

  

836 

  Kalei 2014 72.9 75.5±3.7 4.9 1305 1275±42.1 3.3 875 883±11.3 1.3* 

 

2015 78.1 

  

1245.5 

  

891 

  Galaxy 2014 79.5 76.7±4 5.3* 1429 1300±181.7 14 950 893±80.6 9 

 

2015 73.8 

  

1172 

  

836 

  Fuji 2014 76 77±1.5 1.9* 1368 1307±86.6 6.6 924 908±23.3 2.6 

 

2015 78.1 

  

1245.5 

  

891 

  Hi Early 2014 76 77±1.5 1.9* 1368 1307±86.6 6.6 924 908±23.3 2.6 

 

2015 78.1 

  

1245.5 

  

891 

  * lowest coefficient of variation, CV(%) across the three chill models 
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3. Modelling to predict the timing of flowering in apple under current climates  

(Appendix 1) 

The relationship between winter chill, heat and flowering was described mathematically in the chill-

overlap model of flowering developed for almonds (Pope et al., 2014) (Figure 6). This model assumes 

that there is a minimum amount of chill and a minimum amount of heat required for flowering. The more 

chill that is received over and above the minimum chilling requirement, the lower the amount of heat that 

is needed. In this way, the timing of flowering is determined by the complex relationship between the 

amount of chill and heat that is received during dormancy.   

The baseline flowering and temperature datasets collected as part of this project were used to 

successfully validate the chill-overlap model for ‘Cripps Pink’ apple (Darbyshire et al., 2016), enabling 

projections of climate change impacts on the timing of flowering to be made (Table 3).  

 

                                    

Figure 6. The Chill-Overlap Model for flowering in apple. Cr is minimum chill required for 

flowering, Co is the maximum additional chill that will reduce the heat requirement. Hr is the 

heat required when Co chill is accumulated, and Ho is the maximum possible heat 

requirement for flowering. (Redrawn from Darbyshire et al., 2016). 
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Potential impacts of warming temperatures on flowering 

1. Modelling to predict changes in the timing of apple flowering under future 

climates 

(Appendix 1) 

The chill-overlap model for ‘Cripps Pink’ apple was used to predict changes in the timing of full bloom in 

growing regions across Australia in 2030 and 2050. In Orange, a high chill location, the average date of 

full bloom was advanced (earlier bloom) in 2050 by 4 to 5 days. The milder winter locations showed a 

delayed full bloom date in 2030 and 2050, with the greatest impact felt at Manjimup. 

Changes in flowering time for ‘Cripps Pink’ in 2030 are likely to be within the current range of grower 

experience. However, by 2050 flowering times are predicted to be considerably later in milder winter 

regions. To determine how flowering time in other apple cultivars will be impacted by climate change, the 

chill-overlap model would require validation with flowering data from each cultivar.    

 

Table 3. Average date of full bloom for ‘Cripps Pink’ apple in 2030 and 2050 using a 

minimum to medium (RCP4.5) and worst case scenario (RCP8.5) modelling approach. 

 

Average 
Predicted Full 
Bloom date Present 

2030 
 

2050 
 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Applethorpe 4 Oct 7 Oct 9 Oct 12 Oct 16 Oct 

Shepparton 30 Sep 3 Oct 3 Oct 5 Oct 6 Oct 

Manjimup 16 Oct 22 Oct 25 Oct 30 Oct 2 Nov 

Huonville 26 Sep 27 Sep 29 Sep 29 Sep 29 Sep 

Orange 2 Oct 28 Sep 28 Sep 28 Sep 27 Sep 

Mount Barker 1 Oct 5 Oct 4 Oct 6 Oct 8 Oct 

 

2. Using climate analogues    

(Appendix 3) 

The climate analogue analysis using Manjimup as an analogue for Stanthorpe in 2030 indicated that 

growers in the Stanthorpe region were likely to experience a more variable and protracted pattern of 

flowering across many apple cultivars by 2030 (Figure 7), but without any clear negative impact on 

productivity. Use of dormancy-breaking sprays was identified as a possible adaptation with no obvious 

requirement to shift to different cultivars or tree crop species at this stage. 

Results from this case study indicated that the climate analogue approach can provide valuable 

information around potential climate change impacts and adaptation strategies for horticultural industries. 
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This finding comes with a note of caution however. Climate and plant physiology are complex systems, 

and the information gained from using climate analogues should be considered in a broad context, with 

care taken to the detail.  

 

Figure 7. Variable bud burst and flowering in 'Cripps Pink', Manjimup, spring 2014. 

 

Options for adaptation: management of flowering under future climates   

1. Cultivar selection — matching cultivars with appropriate winter climates 

Ideally, apple and pear cultivars should be matched with suitable growing climates, which in this case 

refers to selection of cultivars with chilling requirements that are comfortably below the minimum winter 

chill received in a particular location (Atkinson et al., 2013; Luedeling et al., 2015). However, there are 

multiple factors that influence cultivar choice (for example, market opportunities) and uncertainty around 

determination of cultivar chilling requirements make this somewhat difficult.  

The collection of flowering time observations undertaken as part of this study indicated that more 

detailed monitoring and recording of green tip and flowering dates across the orchard would enable 

growers to identify cultivars that are performing well in the local climate, and those that are not getting 

enough chilling from season-to-season (providing early indication of cultivars that might be impacted by 

warmer winters in the future changing climate). These records could also be used to identify subtle shifts 

in the timing of flowering between cultivars and their pollinisers. New sensing technologies will enable 

simpler collection of large amounts of data in the future (Panda et al., 2010). 
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2.  Dormancy-breaking sprays as an adaption to inadequate winter chill 

(Appendix 4) 

The dormancy-breaking sprays assessed in this 2015-16 study were able to advance flowering time and 

compact the flowering period in ‘Gala’ apple, with differences observed between products and sites 

(Figure 8). A more compact and uniform flowering period has been shown to have a number of benefits 

including improved management of flowering pests and chemical thinning practices (Bound et al., 2004; 

Theron, 2013).  

Despite the compaction of flowering, there were no clear differences observed in fruit set, yield or 

variability of apple maturity in trees treated with dormancy-breaking sprays. More work is required to test 

the potential of these products to improve fruit quality and reduce the length of harvest. Advances in 

harvest timing were observed with the dormancy-breakers and generally reflected differences in 

flowering dates. The ability to manipulate harvest timing can be useful in situations where advantage can 

be taken of a high-price market window.  

The results suggest that dormancy-breaking products are likely to be a viable adaptation tool for some 

cultivars in lower winter chill years, but the degree to which flowering can be managed with dormancy-

breakers as the climate continues to warm, is yet to be determined. 

 

Figure 8. Green tip, first flower and full bloom in Gala apples treated with and without 

'dormancy breaking' sprays Dormex®, Waiken™ and Erger® in Huonville, Applethorpe and 

Manjimup in 2015. 
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3. Changing cultural practices 

(Appendices 2 and 3) 

A review of the scientific literature undertaken as part of this project, together with information gained 

from personal communication with growers and industry suggest that irregular and protracted flowering 

can be difficult to manage and will likely require changes in thinning practices (Bound et al., 2004; 

Theron, 2013). Determining an appropriate thinning program is likely to be challenging when buds are at 

multiple stages of green tip and flowering on individual trees (Theron, 2013). Fruitlets may vary more in 

size and developmental stage, and careful hand thinning will likely be required to optimise crop 

uniformity (personal comm.). Where uniformity cannot be achieved, the greater spread of fruit maturity 

at harvest may require greater effort to pick at the appropriate time (personal comm.).  

Impacts of increased frequency of extreme heat days on fruit quality and options for 

adaptation 

Understanding relationships between summer temperatures and the incidence of 

sunburn under net and no net 

1. Air temperature thresholds for sunburn damage 

(Appendix 5) 

Minimum air temperatures for potential sun damage were determined for ‘Royal Gala’ apple in Australia. 

The air temperature thresholds were 34.1 and 38.7°C, respectively, for browning and necrosis for non-

netted fruit and 37.9°C for browning under netting (Figure 9).  

When the air temperature thresholds were applied across southern Australia, it was found that some 

fruit-growing regions were more exposed to potential sun damage risk than others. Cooler summer 

regions (such as Huonville and Applethorpe) illustrated very little risk while warmer summer regions 

(such as Shepparton) displayed a greater potential risk, accompanied by substantial variability between 

years (Table 4). Managing this variability in potential risk is important to maintain yield and quality.  

Air temperature thresholds can be used by growers as a guide for timing the use of overhead sprinklers 

for evaporative cooling in efforts to minimize potential damage. 
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Figure 9. Fruit surface temperature (°C) recordings and related air temperatures (°C). 

Necrosis and browning fruit surface temperature thresholds represent 52 and 47.8 °C 

respectively. Figure sourced from Darbyshire et al. 2015. 

 

Table 4. Distribution of potential damage days in January for sites in Australia’s growing 

regions for 10th, 50th and 90th percentiles of data. Table sourced from Darbyshire et al. 

2015.  

 Browning, non-netted  Browning, netted  Necrosis, non-netted 

Site 10th 50th 90th  10th 50th 90th  10th 50th 90th 

Spreyton1 0 0 0  0 0 0  0 0 0 

Huonville 0 0 1  0 0 0  0 0 0 

Applethorpe 0 0 2  0 0 0  0 0 0 

Batlow1 0 0 4  0 0 0  0 0 0 

Yarra Valley1 0 2 5  0 0 1  0 0 1 

Manjimup 0 3 5  0 0 2  0 0 1 

Lenswood1 0 3 6  0 0 2  0 0 1 

Young1 1 7 16  0 1 5  0 0.5 4 

Shepparton 2 6 12  0 1 5  0 1 4 

Donnybrook1 3 7 11  0 1 3  0 0.5 2 
1additional locations included in this table were part of the Crossing the threshold: adaptation tipping 

points for Australian fruit trees project.  

2. Predicting fruit surface temperature from weather data using the 

‘thermodynamic Smart-Sinclair’ model 

(Appendix 6) 

The thermodynamic Smart-Sinclair model (Smart et al., 1976) was tested on ‘Royal Gala’ grown under 
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net and no net. The optimised model produced was able to predict fruit surface temperature with a root 

mean square error of 2 to 3°C. The presence of netting reduced the median fruit surface temperatures by 

1.5 to 2.0°C. The mechanism for this netting effect was through the reduction of the intensity of the solar 

beam by interception and scattering, while still allowing sufficient air flow to enable transfer of heat from 

the fruit surface to the air.  

This type of modelling can be used to understand processes and quantify the effects of various netting 

structures on fruit surface temperature and sun damage risk. However, the thermodynamic fruit surface 

temperature model cannot be used for predicting the effects of climate change due to the lack of reliable 

projected solar radiation and wind speed data for future climates. For applications such as assessing the 

benefits of netting in Australia’s apple growing regions for a range of climate change scenarios, the air 

temperature threshold approach of Darbyshire et al. 2015 described above, is more appropriate.  

Potential impact of an increased frequency in extreme heat events on the incidence of 

sunburn, and the effectiveness of netting as an adaptation strategy 

(Appendices 1 and 7) 

Minimum air temperature thresholds for sunburn damage in ‘Royal Gala’ apple grown with and without 

net (Darbyshire et al., 2015) were used to consider the risk of sunburn damage under future climates in 

pome fruit growing regions of Australia, and the effectiveness of netting to reduce this risk (Table 5). 

Exposure to sunburn browning-risk was highly dependent on the geographical location. Some locations 

were found to maintain minimal sunburn browning-risk up to 2050, while others will potentially 

experience the risk for a significant proportion of the January/February fruit growing period. Shepparton, 

Mt Barker and Manjimup will be most adversely affected, however the installation of over-tree netting 

substantially reduced the impact of sunburn browning.  

Analysis of multiple locations enables the use of climate analogues (Whetton et al., 2013) for impact and 

adaptation assessments.  
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Table 5. Average sunburn browning risk (percentage of days in the January to February 

period) for ‘Royal Gala’ apples grown at sites across Australia, with and without netting.  

Sunburn browning risk classifications: 

 5% > 5 to 10% > 10 to 20% > 20 to 30% > 30 to 50% 

 

 

Without Netting  2030 2050 

Site Present RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Applethorpe 1.1 2.4 2.8 2.8 4.9 

Shepparton 18.3 23.9 26.8 27.5 35.8 

Manjimup 10.0 15.2 15.2 16.6 19.8 

Huonville 2.4 3.4 3.8 4.5 4.2 

Orange 2.4 3.8 4.4 3.7 8.4 

Mt Barker 17.3 20.7 22.9 23.2 25.8 

 

    

With Netting 

 

2030 2050 

Site Present RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Applethorpe 0.0 0.0 0.1 0.1 0.4 

Shepparton 4.8 7.0 9.0 8.8 13.2 

Manjimup 1.6 3.8 3.9 4.4 6.0 

Huonville 0.3 0.6 1.0 1.2 1.1 

Orange 0.1 0.1 0.1 0.1 0.7 

Mt Barker 5.4 7.2 9.1 9.4 10.7 
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Black and white netting: impacts on the orchard environment, fruit yield and quality  

(Appendix 8) 

Observations from the Western Australian netting demonstration site (Figure 10) showed similar air 

temperature conditions (including winter chill accumulation) under the netted and non-netted orchard 

blocks. There was a slight increase in humidity under net which was associated with a higher incidence of 

pest and disease. There were no differences in bud burst and full bloom dates between trees under 

black, white and no net. 

Fruit surface temperatures recorded in apples over the late summer period were higher in the non-netted 

apples (Figure 11). Fruit size was similar between netted and non-netted blocks; however fruit colour 

management using reflective mulch was required under the nets.  

 

Figure 10. Western Australian netting demonstration site at the Lyster Matijari Orchard, 

Manjimup 

 

 

 

Figure 11. Fruit surface temperature (FST) and air temperature measured in the black net, 

white net and no net rows at the Lyster Matijari orchard (Manjimup) from February to mid-

March 2014. 
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Impacts of warming temperatures on yield 

(Appendix 9) 

Modelling potential yield in apple using Malusim 

In a recent report, Darbyshire and McClymont (2016) concluded that positive validation of MaluSim under 

Australian conditions was not achieved, based on poor prediction of yield by MaluSim for ‘Royal Gala’ and 

‘Cripps Pink’ at multiple sites in Australia. However, performance of MaluSim in predicting fruit weight of 

‘Royal Gala’ trees at the North Shepparton site, supported use of the model for preliminary investigation 

of influences of climate change on potential yield, as part of this project.  

Potential impacts of warming temperatures on yield in apple 

Using Malusim, the predicted impact of increased temperatures (+ 2°C) on yield in ‘Royal Gala’ apples in 

north Victoria was minor under the conditions modelled in this investigation. However, further research 

into possible effects of changes in harvest timing, leaf fall and elevated atmospheric carbon dioxide 

concentrations is required to better understand yield responses to climate change.  

Communication, development and extension  

Assessing the status of available information around climate change in the apple and 

pear industry in 2013  

A review of climate change information available to the Australian apple and pear industry showed a lack 

of readily accessible, reliable and consistent information available to growers at the time. As a result it 

was concluded that, a) scientific outcomes from this project need to be published in a grower friendly 

format, b) research should be extended in a consistent manner through national grower workshops 

across the country and online blogs, and c) information generated needs to be stored online for easy 

access.  

Improving industry understanding of likely changes in climate, potential impacts on 

apple and pear production, and options for adaptation 

Outcomes from the national grower workshops (appendix 10) were overwhelmingly positive with the 

specific feedback varying depending on the location. A number of knowledge gaps were identified during 

the workshops, including the need for cultivar chilling requirements for existing and new cultivars, the 

role of soil temperature in dormancy breaking, and the need for more accurate in-season and long-term 

climate forecasting. There was a strong focus on the potential impact of extreme events on the industry 

under future climate scenarios, with less understanding about the potential impacts of more subtle 

increases in temperature. 

Three grower publications were put together reporting on the latest project outcomes and information 

already available from either earlier research in Australia and/or other pome fruit growing regions. The 

publications were written with input from the project researchers and APAL (as the technical working 

group) on the topics of winter chill, netting for heat and climate scenarios. The guides will be available 

online (www.hin.com.au) and as hardcopies from APAL and/or the participating agencies. 

 

http://www.hin.com.au/
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Increasing knowledge and skills to enable informed decision making on climate change 

adaptation 

Research outcomes were interpreted and communicated with a clear focus on practical on-farm 

application. For example, findings from the fruit surface temperature research were interpreted and 

communicated as regional sunburn browning-risk with analysis of the effectiveness of netting as an 

adaptation strategy to increased frequency of extreme heat days. The Western Australian netting 

demonstration site enabled on-site communication with growers in that state around the effectiveness of 

netting and the associated practical implications. Green tip and flowering data collection methods were 

developed for growers to use in their personal orchard record systems to determine cultivar performance 

and identify shifts in flowering time and/or quality. A winter chill website was developed to assist growers 

and, industry more broadly, to access and interpret winter chill data for their local region. 

Building a connected and collaborative approach to climate change in the apple and 

pear industry 

A strong network of researchers, extension officers, industry development officers, growers and other 

industry representatives was established nationally and continued to grow until project completion. The 

success of this project objective is discussed in the ‘evaluation and discussion’ (p39).  
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Evaluation and Discussion 

Measuring project impact 

The proposed project outcome was to provide Australian apple and pear growers, pome fruit researchers 

and industry consultants with a greater understanding of predicted climate change in their region, the 

potential impacts and strategies for adaptation. A formal evaluation of the project’s ability to deliver on 

this outcome, was undertaken at the mid-way point through Horticulture Innovation Australia’s 

independent mid-term review process. 

Through extensive research, development and extension activities, this project delivered new knowledge 

to industry on regional climate change scenarios, potential impacts of changing climate on flowering and 

fruit quality, and options for adaptation.  

Project outputs were produced across a broad variety of print, digital and oral communication mediums 

(refer to p13). The list includes 3 dedicated grower publications communicating climate risk and 

adaptation information for the apple and pear industry, a website for provision of up-to-date winter chill 

information, 6 grower workshops, 3 grower technical working group meetings, 2 industry surveys, 28 

articles published in industry magazines, 5 presentations at industry conferences, 15 presentations at 

government and industry stakeholder meetings, 11 media items in-print and on radio, 9 technical reports, 

2 dedicated project web pages, 6 regional chill factsheets, numerous blogs, 5 scientific publications and 

presentation at 2 scientific conferences.  

The project trial sites were located in three growing regions (Western Australia, Victoria and 

Queensland), however significant effort was made to extend and communicate project outcomes more 

broadly across the industry. Grower workshops and technical working group meetings were held in New 

South Wales and South Australia. Collaboration with researchers from the University of Tasmania through 

the ‘Crossing the threshold: adaptation tipping points for Australian fruit trees’ project and the dormancy-

breaking spray trial facilitated effective communication with industry in that state. In addition, multiple 

members of the research and extension team organized and operated a project stand in the trade hall of 

the 2015 National Horticulture Convention in conjunction with the Department of Economic Development, 

Jobs, Transport and Resources.  

To measure ‘greater understanding’ of climate change by the apple and pear industry, an extensive 

surveying process before and after project completion would have been required. This was not 

undertaken as part of the project, however, the extent of project outputs delivered across the country 

give a good indication of the level of engagement that this project successfully achieved.        

In the next few years, the project impact will be measurable by assessing the level of uptake and use of 

the grower publications and ‘winter chill and growing degree day’ website. In addition, national networks 

developed over the last four years between members of the project team and industry, are likely to 

continue to provide ongoing benefit to Australian horticulture as its members move to reduce 

vulnerability to climate change risks.  
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Effectiveness of project activities in delivering project outputs and achieving intended 

outcomes 

Efficiency of the delivery mechanism/s and appropriateness of the methodology  

A mid-term project review conducted in 2014 by Professor Snow Barlow from The University of 

Melbourne found the research to be ‘scientifically rigorous and directed towards the contracted objectives 

of the project’. The review highlighted the good progress made by the research and extension team in 

engaging with industry, and in the delivery of a broad information mix incorporating immediate adaptive 

strategies such as netting to reduce sunburn risk, and future long-term climate change impacts.  

Our use of small grower-based technical working groups to receive guidance on research project direction 

and outputs was sound methodology, but required considerably more resources to maximize its value. 

The process of establishing these groups nationally, running meetings, compiling and disseminating 

outcomes, and maintaining communication with the groups throughout the project was significant. 

Ideally, the groups need to be coordinated by a local industry representative with strong connections to 

the industry in their region, and good knowledge of the industry itself.     

Barriers to communication and extension around climate change adaptation 

Effective communication between researchers and growers is particularly important in delivering 

messages on climate change impact and adaptation, due to the vast quantity of information and 

misinformation in the public sphere. A number of communication and extension barriers were identified 

during the course of project engagement activities (Table 6), and these learnings were used to improve 

the effectiveness of our communications.  

For example, widespread confusion in the industry around measurement of winter chill and chilling 

requirements was identified as a significant barrier to effective communication of research findings 

related to climate change impacts on winter chill and flowering. As a result, the ‘winter chill and growing 

degree day’ website was developed (as part of a project variation) to provide chill calculation tools and 

supporting information for industry, with the aim of improving understanding and enabling better 

management of low winter chill years in orchards across Australia. 
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Table 6. Barriers to communication and extension around climate change adaptation 

Barriers Comments 

Skepticism of climate change Communication with growers nationally 

suggested that this was a minority of industry. 

Conflicting messages from Governments 

regarding potential climate change impacts 
and the need for adaptation 

 

Feeling of responsibility for climate change 

without having realistic strategies to combat it 

 

Resistance to implementing changes required 
for climate change adaptation  

Could be for a variety of reasons including 
financial and family pressures.  

Timing of communication- needs to be 
considered in the context of production 

stresses more broadly 

Growers in the midst of battling drought are 
unlikely to be concentrating on understanding 

chilling requirements. Information provided needs 

to be carefully matched with local industry needs.  

Large knowledge gaps in the science  For example, it is difficult for growers to make 

cultivar choices based on climate suitability due 

to the lack of basic understanding around chilling 
requirements and tolerance to heat.  

Confusion around chilling requirements and 
measurement of winter chill  

Generated historically by the reporting of winter 
chill in different units and general spread of 

misinformation.  

Confusion around the terms ‘climate variability’ 
versus ‘climate change’ 

 

Confusion over the use of different scientific 

terminologies 

Need to use consistent terminology in all 

communications, for example around winter chill 
and phenological stages. 

  

Feedback on activities and quality and usefulness of project outputs 

Feedback on research and extension activities was obtained from a broad cross-section of apple and pear 

growers and industry representatives nationally, through meetings with APAL staff, and discussions and 

evaluations at grower workshops. A formal evaluation completed by 12 growers at the Bilpin workshop in 

2015 indicated that 100% of them found the workshop content useful for their orchard businesses and 

that they would like to attend further events. Similarly positive results were obtained elsewhere through 

informal discussions.    

In addition, feedback was sought via the project websites, through Australian Fruitgrower articles and, 

regular discussions with growers on-site during research data collection and various grower meetings. 

Grower experiences of local climate change impacts were often communicated during one-on-one 

conversations. The APAL industry conferences were utilized as an effective medium for sharing project 

outcomes. A dedicated project stand and display was set up in the exhibition hall at the National 

Horticulture Convention on the Gold Coast in 2015 for the purpose of sharing project outcomes, 

responding to targeted inquiries and obtaining feedback from industry nationally.  
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The value of online project outputs can be quantified through the number ‘hits’ to project website 
pages.  The project pages on the Horticulture Industry Network site have received 987 hits since they 
were developed in 2014, indicating the usefulness of this medium for project communication. 

Scientific feedback was obtained from within the project team as well as through linkages with 

researchers nationally. Critique of research methodology and results was sought from international 

scientists through publication in peer-reviewed journals, presentations at scientific conferences and 

through hosting visits from international researchers.       

Feedback received was discussed with the project team during the monthly teleconferences and annual 

face-to-face meetings and was incorporated back into the project as deemed appropriate by the group.  

Key learnings  

Climate change will add significant variability into the pome fruit crop production system with respect to 

flowering and fruit quality. Most Australian growers are already used to dealing with some level of climate 

variability and it seems likely that impacts on flowering and fruit quality may be within the range of 

grower experience up to around 2030, but that by 2050 growers will be operating outside of current 

experience. This will present challenges for the Australian industry in the consistency of supply and in 

maintenance of the uniform orchard blocks that are a prerequisite for the efficient use of mechanisation.  

Precise timeframes for impacts of warming temperatures on pome fruit production are difficult to 

determine because of the amount of variability in both the climate (including microclimate) and orchard 

production systems. For example, under the worst case scenario Manjimup is projected to receive an 

average of 46 chill portions in 2050. This means that in cold years there is likely to be plenty of chill for 

apple production, but warm years will challenge many current commercial cultivars. If the grower has 

adapted by planting lower chill cultivars and adjusted their management practices they are more likely to 

grow a good crop every year.  

The Australian apple and pear industry in Australia, and globally, has a strong capacity for adaptation to 

the changing climate due to the availability of new technologies for crop sensing, opportunities for 

protected cropping, a strong research history in crop physiology, and availability of a broad diversity of 

scion and rootstock genetics. Genetic diversity in particular can be exploited to ensure commercial 

cultivars are better adapted to the changing climatic conditions.    

Successful adaptation to the changing climate will be supported by capture and interpretation of data on 

tree phenology, climate and orchard practices. Australia’s industry is made up of growing regions with 

diverse climates and much can be learnt about climate change impacts and options for adaptation by 

sharing of knowledge. In future, more comprehensive data will be collected on orchards through the use 

of sensing and mapping technologies. This data can be used to undertake more sophisticated and 

comprehensive analysis of flowering patterns and variability between and within locations.   

Specific research learnings are listed under the stated project objectives.   

1. Develop climate change scenarios for pome fruit growing regions of Australia in 2030 

and 2050, including the likely impact of climate change on winter chill and extreme 

heat.  

- Australia has undergone a consistent warming trend since 1910 however, at a local level the 

experience of climate change has been different in each pome fruit growing region. Changes in 

average minimum and maximum temperatures, and extreme heat for the period from 1968 to 
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2016 varied between locations.  

- Milder growing regions have experienced a decline in annual winter chill accumulation since 1968, 

while the colder regions of Huonville and Orange have not changed. 

- Increases in the number of extreme heat days have been experienced in Shepparton and Mt 

Barker, while the frequency of extreme heat days in Manjimup in the last seven years has been 

above the long-term average. 

- The climate projections for 2030 and 2050 show that all pome fruit regions across Australia can 

expect to experience: 

 Declines in winter chill accumulation. Warmer winter growing regions such as Manjimup and 

Applethorpe were projected to experience a reduction in winter chill of 20% to 30% by 2050. 

A decline of between 10 and 15% chill was projected for the coldest regions (Huonville and 

Orange) over the same period. 

 An increase in the number of extreme heat days during the growing season. The greatest 

impacts were projected to be in regions such as Shepparton and Mt Barker, with hot summer 

climates.  

- Climate change impacts on winter chill are likely to be within grower experiences of season-to-

season variability up to approximately 2030. On-farm adaptation to this variability will reduce 

longer term climate change risk to orchard profitability. By 2050, it is likely that growers will be 

operating under climates outside of the current range of experience for a particular region.  

- Expression of climate change projections in terms of meaningful horticultural climate metrics 

(chill portions and sunburn browning risk days) instead of average temperatures, improves their 

value to industry by directly linking projected changes in climate with impacts on production.  

2. Understand how changes in autumn, winter and spring temperatures might impact 

the timing and quality of flowering in cultivars of apple and pear.  

- Analysis of winter chill and flowering from 2012 to 2015 in Applethorpe, Shepparton and 

Manjimup showed: 

 Low winter chill, as observed in Manjimup, was associated with uneven chill accumulation 

caused by short periods of warm weather throughout the autumn and winter seasons.  

 Low winter chill in Manjimup was associated with greater variability in flowering dates 

between seasons, cultivars and individual trees, and irregular and protracted flowering across 

most apple cultivars, relative to the other sites.  

 The variable pattern of flowering observed in Manjimup was likely the result of mild winter 

conditions and inadequate chilling for some cultivars. 

- Analysis using Manjimup as a climate analogue for Stanthorpe in 2030 indicated that growers in 

the Stanthorpe region were likely to experience a more variable and protracted pattern of 

flowering across many apple cultivars by 2030, but without any clear negative impact on 

productivity. Use of dormancy-breaking sprays is an adaptation option. There was with no clear 

need to shift to different cultivars or species at this stage (objective 3). 

- Projections from the chill-overlap model for timing of full bloom in ‘Cripps Pink’ apple in 2030 and 

2050 showed: 

 An earlier full bloom date on average in some high chill locations (for example, in Orange) in 
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2030 and 2050. 

 A later full bloom date at the milder winter locations (Applethorpe, Manjimup and even 

Shepparton) in 2030, with average flowering dates delayed by more than a week in 2050. 

 Changes in flowering time for ‘Cripps Pink’ in 2030 are likely to be within the current range of 

grower experience.  

- Increased frequency of low chill years in milder winter growing regions will likely result in 

symptoms of inadequate chill in some cultivars. Advances in the timing of flowering might be 

observed in cooler winter regions. Changes in the timing of flowering can result in reduced yields 

in cases where the flowering period of polliniser trees no longer overlaps that of the commercial 

cultivar.   

3. Identify adaptations to manage any negative effects of climate change on flowering.  

- The dormancy-breaking spray trial in ‘Gala’ apple in Qld, WA and Tas demonstrated that: 

 Dormex®, Waiken™ and Erger® were able to advance flowering time and compact the 

flowering period.  

 Fruit maturity was advanced with dormancy-breakers and generally reflected differences in 

flowering dates.  

 Dormancy-breaking sprays are likely to be an effective tool for managing flowering in ‘Gala’, 

and other apple cultivars, in lower chill years in Australia.  

 Benefits from the use of dormancy-breakers are likely to be greater in low chill years when 

the potential impacts of inadequate chill on flowering are greatest. Therefore, benefits are 

likely to increase under future climate scenarios.  

- Changes to cultural practices will be required to manage symptoms of inadequate chill such as 

delayed, irregular and protracted flowering: 

 Development of an appropriate chemical thinning program for managing buds at multiple 

stages of green tip and flowering on individual trees. 

 Careful hand thinning to optimise crop uniformity when fruitlets vary considerably in size and 

developmental stage. 

 Additional labour input to pick fruit at the appropriate stage of maturity when there is a 

greater spread of fruit maturity at harvest. 

 Pollination management to reduce the risk of poor flowering overlap in any particular year 

caused by large shifts in flowering dates between cultivars and seasons. 

- The increased irregularity and unevenness of flowering is likely to be a greater management 

challenge for Australian growers than managing changes in flowering time, as growers are 

already experienced at dealing with large shifts in flowering dates between seasons.  

- Using forced bud methodology to determine chilling requirements, apple cultivars fell into groups 

with low (‘Cripps Red’, ‘Manchurian’ crab apple), medium (‘RS103-110’, ‘Granny Smith’, ‘Cripps 

Pink’, ‘Kalei’) and higher chilling requirements (‘Galaxy’, ‘Fuji’, ‘Hi-Early’). Groupings such as these 

enable growers to make more informed cultivar and polliniser choices at planting based on the 

winter chill climate in their region.  
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4. Understand how changes in the frequency of extreme heat days might impact on the 

incidence of sunburn in pome fruit and the effectiveness of netting as an adaptation 

strategy. 

- Minimum air temperatures for potential sun damage in ‘Royal Gala’ apple were established:  

 34.1°C and 38.7°C, respectively, for browning and necrosis for non-netted fruit.  

 37.9°C for browning under netting. 

- Air temperature thresholds were applied across southern Australia and potential sun damage risk 

and effectiveness of netting was determined under future climates: 

 Shepparton, Mt Barker and Manjimup were the most adversely affected by projected 

increases in the percentage of days with potential sunburn browning risk in January and 

February.  

 The percentage of risk days in Shepparton was projected to increase from 18% at present to 

28 to 36% in 2050, with the installation of netting reducing the risk considerably, to around 9 

to 13%.  

- Most growing regions are likely to notice an increased sunburn risk by 2030 (if they haven’t 

already). By 2050, growers in regions with currently milder summers, will need to have adapted 

their current orchard practices to manage the impacts that an increased frequency of heat events 

will have on fruit quality.  

- The thermodynamic Smart-Sinclair model was tested on ‘Royal Gala’ grown under net and no net 

and was able to predict fruit surface temperature with a root mean square error of 2 to 3°C. 

Netting reduced the median fruit surface temperatures by 1.5 to 2.0°C.  

- The thermodynamic Smart-Sinclair model can be used to understand processes and quantify the 

effects of various netting structures on fruit surface temperature and sun damage risk, but 

cannot be used for predicting the effects of climate change due to the lack of reliable projected 

solar radiation and wind speed data.  

5. Understand how different colours of netting impact on the orchard environment, fruit 

yield and quality.  

- Comparison of black and white netting at the Western Australian netting demonstration site 

showed little difference in environmental conditions or bud burst and flowering under the black 

netting, white netting and non-netted orchard blocks. Fruit surface temperatures were higher in 

the no net apples.  

6. Understand how the changing climate might impact the yield potential of apples.  

- The Malusim model for the prediction of potential apple yield, could not be positively validated 

under Australian conditions as it was generally a poor predictor of yield for ‘Royal Gala’ and 

‘Cripps Pink’ at multiple sites in Australia. 

- The MaluSim model was able to predict fruit weight of ‘Royal Gala’ trees at the North Shepparton 

site and supported use of the model for preliminary investigation of influences of climate change 

on potential yield. The predicted impact of increased temperatures (+ 2°C) on yield in ‘Royal 

Gala’ apples in north Victoria was minor under the conditions modelled in this investigation.  
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Recommendations 

Industry 

- The following tools and strategies are recommended for adaptation to an increased frequency of low 

chill years in milder growing regions of Australia:  

 Planting lower chill cultivars. Matching cultivars to their chilling climate is the best option, but 

it is not always possible due to market pressures and a lack of information on chilling 

requirements. 

 Management of delayed and variable flowering with the use of dormancy-breakers. 

 Development of a set of broad guidelines around the use of dormancy-breaking sprays based 

on existing knowledge. Such guidelines could include information on when dormancy-

breaking sprays should be used, and in which cultivars and regions.       

 Adjustments to chemical and hand thinning practices to reduce variability in fruit size and 

maturity.  

 Use of the ‘winter chill and growing degree day’ website for monitoring in-season chill 

accumulation. 

 Preparation of an orchard management strategy to enact in low chill years. This would likely 

include monitoring of winter chill accumulation and the use of dormancy-breakers. 

 Comprehensive in-orchard monitoring of flowering dates across cultivars to provide early 

indication of cultivars that might be impacted by warmer winters, as well as identification of 

subtle shifts in the timing of flowering between cultivars and their pollinisers. 

 In blocks where flowering is becoming increasingly irregular, growers will need to assess the 

point at which the increased cost of inputs and effort required to produce a consistently high 

quality crop make a block of trees unprofitable.  

- To reduce the risks to pollination from shifting flowering times, planting of multiple polliniser cultivars 

with early, middle and late flowering habits, to ensure a good supply of pollen throughout the 

flowering period is recommended where possible. Use of floral bouquets or artificial pollination 

methods can be considered to compensate for loss in flowering overlap. 

- The following tools and strategies are recommended for adaptation by the apple and pear industry to 

increased frequency of extreme heat: 

 Continued investment in netting in locations such as Manjimup and Orange, where many 

orchards are currently un-netted.  

 Use of air temperature thresholds as a guide for using overhead sprinklers for evaporative 

cooling in efforts to minimize potential sunburn damage. 

 Planting heat tolerant cultivars. As for winter chill, matching cultivars to their growing climate 

is the best option, but it is not always possible due to market pressures and a lack of 

information on different heat tolerances of cultivars. 

 Development of orchard practice guidelines for managing extreme heat (bringing together 
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aspects of tree canopy structure, evaporative cooling, netting types, irrigation, nutrition, 

spray-on protectants and other stress reduction products). 

 Development of orchard practice guidelines for optimising post-harvest fruit quality in warm 

to hot summer/autumn conditions (pre and post-harvest management). 

- For improved tactical and strategic planning in the orchard, use of the Bureau of Meteorology climate 

outlook videos (http://www.bom.gov.au/climate/outlooks/#/overview/summary), State of the Climate 

reports (http://www.bom.gov.au/state-of-the-climate/) and the ‘climate change in Australia’ website 

(https://www.climatechangeinaustralia.gov.au/en/) is recommended. 

- It is recommended that the Australian apple and pear industry utilise and exploit the genetic diversity 

available in scions and rootstocks globally, to ensure that commercial cultivars can be better adapted 

to the changing climatic conditions.    

- Climate analogues should be used to better identify the timeframes for impacts of low chill and 

extreme heat on apple and pear production, and the best strategies for adaptation. For example, 

growers in Manjimup are already successfully managing the impacts of inadequate chill in some 

years, lessons can be learnt from their knowledge and experience.   

- This project focussed specifically on climate change impacts on crop physiology, and it is 

recommended that the industry undertake a broad economic assessment of climate change impacts 

from storm events, drought, increased wind, changes in evapotranspiration, and so on.  

- The industry needs to consider how basic research gaps, such as knowledge around relationships 

between temperature and tree physiology, may be filled in future years to ensure the flow of new 

information and ideas into the industry does not become limited.  

Extension and communications 

- Having an extension and research team working side-by-side from project start to end has significant 

benefits for communications and industry engagement.  

- National collaboration was enormously beneficial to the success of this project, as were linkages 

between projects and across industries.  

- Having a core team responsible for communication ensured timely, relevant and consistent 

information was made available, and utilising well established local grower groups and extension 

officers ensured ease of facilitation.  

Scientific  

Priority research needs 

- Determination of significant biological thresholds (chilling requirements, sunburn damage thresholds, 

pest and disease development thresholds) to enable conversion of weather and climate data into 

useful horticultural metrics for everyday decision making.  

- Investigation of methods / programs for evaluation of new and existing scions and rootstocks, with 

the objective of providing sufficient information to enable matching of apple and pear cultivars with 

suitable growing climates, including matching chilling requirements with winter chill and heat 

https://www.climatechangeinaustralia.gov.au/en/
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tolerance with summer temperatures.  

- New genetics: breeding programs are needed that focus on lower chill cultivars with good tolerance 

for heat, alongside other quality parameters.  

- Determination of genetic and/or physiological markers of flower bud progression into dormancy and 

out of dormancy prior to bud burst. This would improve the definition of apple and pear chilling 

requirements.  

- Efficacy of using dormancy-breaking sprays for long-term adaptation to warming temperatures, 

including the extent to which dormancy-breaking sprays can be used as an adaptation to low chill 

years, relationships between dormancy-breaking sprays and fruit quality, particularly in cultivars and 

investigations into alternatives to Dormex®.  

- Methods for managing heat in the orchard for improved fruit quality:  

 Efficient tree canopies for balancing multiple requirements, including low sunburn damage, 

optimal fruit quality (including colour development), water-use efficiency and disease 

management. 

 Understanding relationships between orchard temperatures during the growing season and 

fruit quality at harvest and after storage.  

 Use of plant growth regulators and stress reduction chemicals.  

Additional research gaps 

- Pest and disease management under warmer climates. Codling moth are likely to increase generation 

number per season, fruit fly are likely to have an extended range and disease management under 

netting on trellis systems will present new challenges, particularly when combined with the use of 

evaporative cooling. 

- Determination of the limits of profitable apple production with regards to winter chill. Production 

areas with very low winter chill accumulation in South Africa and Southern Brazil rely heavily on 

dormancy-breakers and would be obvious target locations for a global investigative study.     

- Potential impacts of low winter chill on marketable yield. 

- For improved definition of apple and pear chilling requirements: 

 Cultivar specific parameterisation of the Dynamic model for improved chill model 

performance.  

 Relationship between bud temperature and dormancy breaking.  

 Standardisation of methods for determination of chilling requirements.  

 Investigation of the potential role of day length in dormancy breaking in apples. 

 Effectiveness of early versus late season chill in dormancy breaking. 

 Role of root-zone temperature and rootstocks in bud burst. 

 Relationship between temperatures received during autumn prior to dormancy and quality of 

bud burst and flowering. 

 Impacts of pruning and defoliation on modifying winter chill requirements. 
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- Validation of the chill-overlap model with flowering data from cultivars other than ‘Cripps Pink’ apple 

to determine how flowering time will be impacted by climate change.    

- Better understanding of flowering in new and existing pear cultivars, and the likely impacts of 

changing climate.  

- Fruit surface temperature thresholds for sunburn for a wide variety of cultivars. Transferability of fruit 

surface temperature thresholds across cultivars and locations needs to be investigated.   

- Effectiveness of different types (colours, weaves) of netting in reducing the risk of sunburn damage 

and its effect on assimilation, transpiration and fruit quality. 

- Impact of climate change on the duration of fruit development and maturity times for apple and pear 

cultivars of interest.  

- Potential impacts of the extended growing season (caused by the later onset of cold temperatures in 

autumn and warmer springs) on canopy management and fruit quality.  

- Impacts of warming spring and summer temperatures on flower bud initiation and development.  

- The impact of elevated CO2 temperature shifts on fruit maturation, colour development and leaf fall 

to improve predictions of yield under different climate scenarios.   

- Pollination in a changing climate. Warming temperatures will impact bee behavior, synchronisation of 

flowering (due to changes in the timing of flowering), flower viability and floral bud initiation.  

- Potential for POAMA (Predictive Ocean Atmosphere Model for Australia) to make in-season and short 

to medium-term climate forecasts with a level of accuracy necessary to inform decision making at 

tactical and strategic levels.  
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Introduction	
This	report	sets	out	our	current	knowledge	of	how	climate	change	will	affect	pome	fruit	growing	

regions	in	Australia.	All	the	pome	fruit	growing	regions	in	Australia	have	seen	a	consistent	warming	

trend	since	1970	for	both	winter	and	summer	temperatures.	In	response	to	this,	growers	have	begun	

to	adapt	the	management	of	their	orchards	to	cope	with	these	changes	to	remain	profitable.	These	

trends	are	likely	to	continue,	so	what	can	growers	expect	in	the	future?	

Site	Descriptions	and	Data	Preparation	

Trends	in	temperature	over	the	period	1968	to	2015	have	been	presented	as	the	yearly	average	

change	(anomaly)	from	a	baseline	period	of	1981	to	2010	(30	years)	for	each	of	the	sites	shown	in	

Figure	1.		

Data	were	obtained	from	SILO1	

(Jeffrey	et	al.	2001),	a	repository	of	

climate	data	for	Australia.	There	are	

two	sets	of	data	available,	a	gridded	

daily	data	set	and	the	patched	point	

dataset	(PPD).	Data	for	the	sites	

shown	in	Table	1,	was	extracted	

from	the	PPD	which	provides	daily	

maximum	and	minimum	

temperatures	from	1889	to	the	

present.	Interpolated	values	are	

inserted	to	maintain	continuity	when	

data	are	missing	for	some	reason	

e.g.,	the	station	was	not	operating	

due	to	malfunction.	Interpolation	is	

usually	from	daily	surfaces,	but	in	some	cases,	might	come	from	more	long-term,	and	hence	less	

accurate,	spatial	data.	The	sites	selected	for	the	study	had	a	generally	low	number	of	days	when	data	

was	missing	(Table	1).	

																																																								

1	http://longpaddock.qld.gov.au/	

Figure	1	Australia’s	apple	and	pear	industry	centres	(white)	
and	locations	referred	to	in	the	text.	
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Meteorological	stations	in	Australia	that	record	temperature	are	a	small	fraction	of	the	total	number	

of	stations.	Stations	at	local	post	offices	that	recorded	data	by	hand	have	sometimes	been	closed	in	

favour	of	automatic	weather	stations	(AWS)	nearby,	often	at	an	airfield.	The	PPD	resolves	some	of	

these	problems	and	provides	data	for	stations	regardless	of	their	previous	history.	However,	this	

reduces	the	reliability	of	datasets	from	stations	with	a	lot	of	missing	observations.	Mount	Barker	and	

Orange	were	used	here	in	preference	to	Lenswood	and	Batlow	respectively,	because	these	stations	

have	more	reliable	historical	temperature	records.		

Table	1.	Description	of	weather	stations	used	in	the	analysis.	

Station	
Number	

Station	Name2	

(Short	name)	

Longitude/
Latitude	

First	Observation	 Last	
Observation	

Missing	
(%)	

41175	 Applethorpe	 151.95°E/
28.62°S	

1	Jan	1968	 Current	 7.4	

81049	 Tatura	Institute	
for	Sustainable	
Agriculture	

(Shepparton)	

145.39°E/
36.43°S	

2	July	1965	 Current	 3.2	

9573	 Manjimup	 116.14°E/
34.25°S	

2	Jan	1968	 Current	 3.7	

63254	 Orange	
Agricultural	
Institute	

(Orange)	

149.08°E/
33.32°S	

2	Jan	1976	 Current	 20.3	

94069	 Grove	

(Huonville)	

147.08°E/	
42.98°S	

1	Jan	1968	 10	Feb	2010	 20.3	

	 	 	 	 	 	

23733	 Mount	Barker	 138.85°E/
35.07°S	

1	Jan	1968	 Current	 1.9	

	

																																																								

2	Data	for	Shepparton	and	Huonville	comes	from	the	Tatura	Institute	for	Sustainable	Agriculture	and	Grove	respectively.	
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Models	for	calculating	winter	chill	rely	on	hourly	data.	However,	hourly	data	is	not	generally	available	

from	the	Bureau	of	Meteorology	weather	stations	and	needs	to	be	generated	from	daily	maxima	and	

minima.	

Daily	data	were	converted	to	hourly	using	the	routine	in	the	chillR	package	(Luedeling	et	al.	2013)		

using	the	R	Statistical	Language	(R	Core	Team	2015).		This	uses	the	interpolation	routine	developed	in	

Linvill	(1990).	An	example	of	this	interpolation	is	shown	in	Figure	2	

	

Figure	2	Examples	of	the	use	of	the	
interpolation	routine	to	convert	daily	
maximum	and	minimum	temperatures	
to	hourly.	The	orange	line	is	21	
December	2015	and	the	blue	line	is	21	
June	2015	for	Applethorpe.	Dots	
indicate	the	maximum	(orange)	and	
minimum	(blue)	for	each	day	that	
were	used	to	generate	the	
interpolated	hourly	data.	

	

	

Reliability	of	techniques	used	to	interpolate	between	daily	and	hourly	temperatures	

Hourly	temperature	data	for	2013	in	Applethorpe	(collected	from	an	on-site	orchard	temperature	

logger,	ARS1)	was	used	to	assess	the	accuracy	of	the	interpolation	method.	The	daily	maxima	and	

minima	were	taken	from	the	orchard	hourly	data	set,	and	the	interpolation	method	was	applied	to	

recreate	the	hourly	data.	The	orchard	hourly	data	was	then	compared	with	the	interpolated	hourly	

data,	Figure	3.	

The	correlation	coefficient	is	0.97	indicating	a	close	relationship	between	the	two	sets	of	data,	

however,	the	effect	of	the	interpolation	can	still	be	seen.	The	sensitivity	of	the	Dynamic	Model	to	the	

discrepancies	between	observed	and	interpolated	hourly	data	needs	to	be	assessed	in	terms	of	chill	

accumulation	and	heat	stress.		
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Figure	3	Measured	hourly	temperature	data	and	
hourly	data	interpolated	from	daily	maximum	
and	minimum	for	Applethorpe.	Line	shows	the	
1:1	correlation.	

	

Figure	4.	Comparison	of	chill	portion	
accumulation	calculated	from	orchard	hourly	
data	hourly	data	interpolated	from	the	orchard	
daily	maxima	and	minima,	and	the	nearby	AWS.	

The	chill	portions	calculated	from	the	three	datasets	were	in	close	agreement	which	is	important	as	

the	SILO	data	needs	to	be	used	to	consider	future	climate	projections,	Figure	4.	

The	impact	of	the	interpolation	on	the	calculation	of	heat	thresholds	is	more	problematic.	

Interpolation	from	daily	orchard	data	to	hourly	overestimated	the	number	of	hours	exceeding	30°C	

by	36%.	Importantly,	based	on	the	number	of	days	exceeding	the	30°C	threshold,	there	was	only	a	

difference	of	two	days	between	orchard	daily	and	the	automatic	weather	station	(AWS)	data.	This	is	

acceptable	and	is	the	approach	that	is	used	in	our	study.	

Models	of	Chill	Accumulation	
What	is	winter	chill?	

The	dormant	winter	phase	is	an	evolutionary	advantage	that	protects	fruit	trees	from	cold	weather	

damage	by	preventing	the	growth	of	cold-sensitive	shoots	and	flowers	in	response	to	a	winter	warm	

spell.		For	trees	to	resume	growth	in	spring	this	dormant	phase	must	be	'broken'.	Perennial	fruit	trees	

break	dormancy	after	certain	winter	conditions	have	passed	-	the	tree	has	then	determined	that	

winter	has	finished	and	will	begin	to	flower	in	response	to	warm	temperatures.	The	winter	chill	

required	to	break	dormancy,	the	chilling	requirement,	differs	by	crop	and	variety,	and	possibly	

locality.		

Accumulation	of	winter	chill	to	break	dormancy	is	largely	a	temperature	dependent	process.		The	

relationship	of	different	temperatures	and	temperature	regimes	to	dormancy	breaking	are	species	

and	cultivar-specific	but	there	are	some	general	aspects	that	are	thought	to	be	involved:	

• Freezing	temperatures	do	not	contribute	to	dormancy	breaking;	
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• There	are	optimum	temperatures	for	the	accumulation	of	winter	chill;	

• Temperatures	either	side	of	the	optimum	decrease	the	contribution	to	winter	chill;	

• High	temperatures	can	undo	previously	accumulated	chill;	

• Cycling	moderate	temperatures	with	effective	chilling	temperatures	enhances	the	

accumulation	of	winter	chill	

• It	is	still	largely	unknown	when	a	tree	becomes	sensitive	to	the	chilling	temperature	–	it	could	

even	be	before	leaf	drop.		

These	assumptions	can	be	expressed	as	a	set	of	calculations	that	together	form	a	chill	model.	The	

three	most	common	models	are:	Chill	Hours,	Utah	Chill	Units	and	the	Dynamic	Model.	

Chill	Hours	

The	Chill	Hours	model	(Weinberger	1950)	is	by	far	the	simplest	model.	It	accumulates	the	number	of	

the	hours	where	the	temperature	is	less	than	7.2°C	and	greater	than	0°C.	There	is	a	form	that	also	

includes	hours	below	0°C,	but	in	this	study,	we	have	used	the	0°C	threshold.	

Utah	Chill	Units	

This	model	(Richardson	et	al.	1974)	uses	a	slightly	more	complicated	procedure	in	which	low	and	high	

temperatures	adversely	affect	the	accumulation	of	chill.	The	method	of	calculation	is	as	follows	

where	T	is	the	temperature	recorded	for	the	hour	in	°C.	

Lower	Limit	(T	>	°C)	 Upper	Limit	(T	<=	°C)	 Chill	Units	Contributed	

	 1.4	 0	

1.4	 2.4	 0.5	

2.4	 9.1	 1.0	

9.1	 15.9	 0.5	

15.9	 18	 -0.5	

18	 	 -1.0	

	

Hours	spent	at	or	below	1.4°C	do	not	contribute	to	chill	accumulation.	Greatest	chill	accumulation	is	

between	2.4	and	less	than	or	equal	to	9.1°C.	Temperatures	above	15.9°C	reduce	the	chill	

accumulation	as	they	contribute	negative	chill	units.		

Dynamic	Model	
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The	Dynamic	Model	(Fishman	et	al.	1987,	Erez	et	al.	1990),	which	calculates	chill	in	Chill	Portions,	is	

the	most	complex	of	the	chill	models.	It	is	the	current	best	practice	model,	especially	in	warmer	

climates	(Erez	2000,	Luedeling	et	al.	2011)	and	is	therefore	the	model	we	have	used	for	winter	chill	

calculations.	In	this	model,	accumulation	of	chill	is	a	dynamic	process	whereby	the	equations	describe	

the	build-up	of	a	hypothetical	dormancy	breaking	factor	(DBF)	through	a	two-step	process.		

The	accumulation	of	DBF	is	referred	to	as	Chill	Portions	and	a	Chill	Portion	has	accumulated	when	the	

amount	of	DBF	reaches	1.	At	this	point	it	forms	part	of	the	stable	pool	and	cannot	be	destroyed.	If	

less	than	1	is	currently	in	the	labile	pool	it	can	be	reduced.	This	is	seen	when	warm	temperatures	

occur	and	there	is	no	chill	accumulation.	However,	the	current	number	of	Chill	Portions	is	not	

reduced.		Production	of	DBF	occurs	between	0°C	and	12°C	and	is	optimal	between	6°C	and	8°C.	The	

model	also	captures	the	situation	observed	in	some	tree	crops	where	accumulation	of	chill	is	

enhanced	when	if	temperatures	in	the	range	13°C	to	16°C	are	cycled	with	lower	temperatures.	
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Trends	in	Temperature	and	Chill	
Accumulation	
Trends	in	temperature	have	been	assessed	in	terms	of	annual	temperature	and	seasonal	maximum	

and	minimum	temperatures	for	each	of	the	sites.	The	Bureau	of	Meteorology	(BoM)	maintains	a	web	

page	that	allows	trends	in	climate	variables	to	be	assessed3.	The	maps	shown	in	Figure	5	show	

consistent	warming	trends	across	the	pome	and	stone	fruit	growing	regions.		

	

	

Figure	5.	Trends	in	temperature	from	1970	to	2015.	Red	shows	that	the	trend	in	temperature	has	
been	towards	hotter	temperatures,	while	blue	shows	a	trend	towards	cooler	temperatures.	The	
higher	the	intensity	of	colour	the	stronger	the	trend.	©	Commonwealth	of	Australia	2016.	Australian	
Bureau	of	Meteorology.	

Autumn	and	winter	

Autumn	and	winter	temperatures	largely	determine	progression	through	dormancy,	and	significantly	

impact	flowering	timing	and	quality	in	pome	fruit	trees.	For	example,	warm	weather	in	autumn	

causes	delays	in	leaf	drop	and	slows	the	entrance	into	dormancy.	Mild	winters	resulting	in	a	lack	of	

winter	chill	cause	delayed,	uneven	and	protracted	flowering.	

																																																								

3	http://www.bom.gov.au/climate/change/#tabs=Tracker&tracker=timeseries	



	 12	

Minimum	temperatures	in	autumn	and	winter	have	increased	in	Huonville,	Orange	and	Mt	Barker	

since	1968	(Figures	6).	In	Huonville	and	Orange,	the	warming	trend	is	more	apparent	in	minimum	

temperatures	than	maximums	over	this	period,	while	Applethorpe,	Shepparton,	Manjimup	and	Mt	

Barker	all	show	an	increase	in	maximum	autumn	and	winter	temperatures	(Figure	7).	

	 	

Applethorpe	 Shepparton	

	 	

Manjimup	 Huonville	

	 	

Orange	 	Mount	Barker	

Figure	6.	Average	autumn-winter	minimum	temperature	anomalies	compared	to	a	base	period	of	
1981	to	2010.	The	black	line	is	an	11-year	moving	average.	

At	Applethorpe,	Shepparton,	and	Mount	Barker,	it	was	more	likely	that	after	1990,	maximum	

temperatures	during	autumn	and	winter	would	greater	than	the	long-term	average	(Figure	7).	

	



	 13	

	 	

Applethorpe	 Shepparton	

	 	

Manjimup	 Huonville	

	 	

Orange	 	Mount	Barker	

Figure	7.	Average	autumn-winter	maximum	temperature	anomalies	compared	to	a	base	period	of	
1981	to	2010.	The	black	line	is	an	11-year	moving	average.	

Winter	chill	

The	milder	growing	regions	of	Applethorpe,	Manjimup	and	Mt	Barker	have	experienced	a	decline	in	

the	number	of	chill	portions	accumulated	since	1968	(Figure	8).	Shepparton	has	seen	a	small	

reduction	in	winter	chill	over	this	period,	while	the	colder	regions	of	Huonville	and	Orange	have	not	

changed.	Eight	out	of	ten	years	in	Manjimup	from	2006	to	2016	have	had	less	winter	chill	than	the	

long-term	average,	Figure	8.	
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Applethorpe	 Shepparton	

	 	

Manjimup	 Huonville	

	 	

Orange	 Mount	Barker	

Figure	8.	Annual	anomaly	(average	change)	in	accumulation	of	chill	portions	(1	March	–	31	August)	
compared	to	a	base	period	of	1981	to	2010.	The	black	line	is	an	11-year	moving	average.	
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Spring	and	Summer	

Temperatures	experienced	in	spring	and	summer	are	an	important	driver	of	flower	and	fruit	

development	and	significantly	impact	on	fruit	quality	in	apple	and	pear	trees.	For	example,	warm	

weather	in	spring	tends	to	shorten	the	period	of	flowering,	and	heat	in	summer	impacts	colour	

development	through	inhibition	of	anthocyanins	(Lin-Wang	et	al.	2011).	Extreme	summer	

temperatures	inhibit	fruit	growth	and	cause	sunburn	browning	(Flaishman	et	al.	2015).	

	 	

Applethorpe	 Shepparton	

	 	

Manjimup	 Huonville	

	 	

Orange	 Mount	Barker	

Figure	9.	Average	spring-summer	minimum	temperature	anomalies	compared	to	a	base	period	of	
1981	to	2010.	The	black	line	is	an	11-year	moving	average.	
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There	were	clear	warming	trends	in	the	minimum	spring	and	summer	temperatures	at	Orange	and	

Mt	Barker	(Figure	9).	At	Shepparton,	Orange,	and	Mount	Barker	it	was	three	to	four	times	more	likely	

that	the	average	minimum	temperature	measured	after	1990,	was	greater	than	the	long-term	

average,	compared	to	that	measured	before	1990.	Spring	and	summer	maximum	temperatures	have	

warmed	in	most	locations	since	1968,	except	for	Huonville	(Figure	10).	This	has	implications	for	the	

frequency	of	extreme	heat	events,	and	warmer	spring	temperatures	may	have	offset	the	reduction	in	

chilling	observed	in	milder	growing	regions.	

	 	

Applethorpe	 Shepparton	

	 	

Manjimup	 Huonville	

	 	

Orange	 Mount	Barker	

Figure	10.	Average	spring-summer	maximum	(right)	temperature	anomalies	compared	to	a	base	
period	of	1981	to	2010.	The	black	line	is	an	11-year	moving	average.	
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Extreme	Heat	

Shepparton	has	experienced	an	increase	in	the	number	of	extreme	heat	days	(i.e.	maximum	

temperature	exceeded	35°C)	received	per	year	since	1968	(Figure	11).	Maximum	temperatures	rarely	

exceed	this	threshold	in	Applethorpe	and	Huonville,	and	these	sites	have	not	seen	much	change	over	

the	period.	Mount	Barker	showed	a	significant	trend	in	the	number	of	heat	days	and	the	last	six	years	

in	Manjimup	have	been	above	the	long-term	average.		

	 	

Applethorpe	 Shepparton	

	 	

Manjimup	 Huonville	

	 	

Orange	 Mount	Barker	

Figure	11.	Annual	anomaly	(average	change)	in	average	number	of	days	where	maximum	
temperature	exceeds	35°C	compared	to	a	base	period	of	1981	to	2010.	The	black	line	is	an	11-year	
moving	average.	
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Climate	Scenarios	for	apple	growing	regions	
for	2030	and	2050	

How	were	the	scenarios	chosen?	

Future	climate	projections	are	derived	using	simulations	of	the	earth’s	climate	system	(Global	Climate	

Model	or	GCM)	under	different	scenarios	of	future	greenhouse	gas	and	aerosol	emissions.	The	

scenarios	are	referred	to	as	representative	concentration	pathways	(RCP,	see	inset	below)	and	

represent	a	plausible	set	of	future	emissions.	A	GCM	uses	this	information	through	the	complex	set	

of	equations	that	determine	how	the	climate	responds	to	changes	in	the	atmosphere.	RCPs	are	

classified	by	the	amount	of	radiative	forcing	(see	inset)	that	will	be	experienced	in	2100.		

	

	

The measured and projected levels of atmospheric CO2 are shown in Figure	12. It is worth noting 

that the projected level in 2100 under RCP 4.5 is the same as the level reached in 2050 under 

RCP 8.5. The observed emission trends (2005-2012) are in line with the worst-case scenario, 

RCP8.5,	(Peters	et	al.	2012). Policy decisions made over the next decade or so will be critical in 

Representative	Concentration	Pathways	(RCPs)	

Radiative	forcing	is	the	extra	heat	that	the	lower	atmosphere	will	retain	as	the	

result	of	additional	greenhouse	gases.	In	1979	this	amounted	to	1.7	W.m-2.	By	

2014,	this	has	risen	to	2.9	W.m-2.	In	1979	the	CO2	concentration	was	335	ppm.	The	

current	level	as	of	February	2016	is	398	ppm.		

RCP4.5	and	RCP8.5	have	been	selected	to	represent	the	range	of	plausible	future	

climates.	

RCP4.5	achieving	lower	emissions	due	to	some	mitigation	efforts	and	the	CO2	

concentration	reaching	540	ppm	by	2100	(rising	moderately	rapidly	and	then	

peaking	early)	–	setting	a	minimum	to	medium	case	climate	change	scenario	

RCP8.5	a	business-as-usual	approach,	with	CO2	concentration	continuing	to	rapidly	

rise	reaching	940ppm	by	2100	–	setting	a	worst-case	climate	change	scenario	

Source:	(Butler	and	Montzka	2016,	CSIRO	2016)	
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determining the pathway that is taken. Data from BoM4 of the global temperature anomaly and 

yearly maximum atmospheric CO2 recorded at Mauna Loa from 1958 to 2016 were used to 

derive a simple relationship between them that accounts for 82% of the variation (see inset 

Figure	12).	

	

Figure	12.	Measured	(Cape	Grim,	Tasmania	and	Mauna	Loa,	Hawaii)	and	Future	CO2	for	RCP	4.5	and	
RCP	8.5	and	measured	and	predicted	temperature	anomaly	(TA)	using	the	relation	shown	in	the	
inset.	

To	determine	the	projections	of	future	climate	change	it	is	first	necessary	to	extract	the	monthly	

change	factors.	Climate	change	factors	allow	the	information	from	coarse-grained	GCMs	(typically	

100-200	km)	to	be	represented	at	a	local	scale.	A	climate	change	factor	for	January,	2030	using	the	

ACCES	1.0	model	might	be	+	1°C,	this	is	added	to	the	daily	observations	for	January	to	create	a	

possible	climate.	This	process	is	repeated	for	each	month,	time	scale	and	GCM.	This	allows	a	future	

climate	set	to	be	created	that	incorporates	historical	variability.	

																																																								

4	http://www.bom.gov.au/climate/change/index.shtml#tabs=Tracker&tracker=global-timeseries	
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While	the	actual	changes	may	be	small	relative	to	daily	temperature	variations,	the	biological	

response	may	be	significant	because	of	the	impact	of	threshold	temperatures.	Calculations	of	chilling,	

for	example,	use	threshold	temperatures	to	determine	the	contribution	made	to	daily	chill	

accumulation.	A	small	shift	in	temperature	throughout	autumn	and	winter	can	have	a	large	effect	on	

the	outcome	as	demonstrated	for	Manjimup	in	2030,	Figure	13.	The	individual	temperature	change	

for	a	given	month	and	RCP	may	only	be	in	the	region	of	0.5	to	1.2°C,	but	over	the	season	this	is	

enough	to	reduce	the	accumulated	chill.	

	

Figure	13.	Accumulation	of	chill	for	historical	average	conditions	at	Manjimup	and	for	a	projected	
climate	for	2030	under	RCP	4.5	and	RCP	8.5	(top).	The	monthly	change	in	average	temperature	that	
caused	the	difference	in	the	chill	accumulation	in	the	future	is	show	in	the	lower	graph.	

Selection	of	Global	Climate	Models	

Global	Climate	Models	(GCM)	were	selected	from	the	list	of	models	generated	by	the	Climate	Futures	

Tool	at	the	Climate	change	in	Australia	website5.	Three	GCMs	(Table	2)	were	selected	based	on	a	high	

M	score	(Watterson	1996)	that	measures	the	ability	of	the	GCM	to	represent	historical	observations.	

A	perfect	match	would	have	an	M	score	of	1000.		The	GCMs	selected	and	their	average	M	scores	

were	ACCCES1-0	(727),	HadGEM2-ES	(720)	and	MPI-ESM-LR	(720).	In	this	case	the	agreement	

between	modelled	and	observed	climate	was	based	on	temperature,	rainfall	and	mean	sea	level	

pressure	for	the	four	seasons	over	the	whole	of	Australia.	These	models	scored	greater	than	800	for	

																																																								

5	http://www.climatechangeinaustralia.gov.au	
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surface	temperature	alone.	For	RCP	4.5,	these	GCMs	were	in	a	group	(23/38	GCMs)	that	predicted	

warmer	winter	maximum	and	minimum	temperatures.	The	projected	change	in	temperature	was	

from	0.5	°C	to	1.5	°C.	For	RCP	8.5,	HadGEM2-ES	was	grouped	with	those	that	showed	a	warmer	

minimum	temperature,	but	hotter	maximum	temperatures	1.5	°C	to	3.0	°C	(13/40	GCMs).	ACCESS1.0	

and	MPI-ESM-LR	were	grouped	with	those	that	showed	warmer	minimum	and	maximum	

temperatures	in	winter	(24/40).	

Table	2.	Description	of	GCMs	used	in	this	study.	

GCM	 Institute	 Average	M	

score	*	1000	

Further	Information	and	spatial	resolution	

(latitude	x	longitude)	

ACCESS1-0	 CSIRO	and	

Bureau	of	

Meteorology	

727	 https://confluence.csiro.au/display/ACCESS/Home	

(1.25°	x	1.875°)	

HadGEM2-

ESM	

Met	Office	

Hadley	Centre	

720	 http://www.metoffice.gov.uk/research/modelling-

systems/unified-model/climate-models/hadgem2	

(1.25°	x	1.875°)	

MPI-ESM-LR	 Max	Planck	

Institute	for	

Meteorology	

720	 http://www.mpimet.mpg.de/en/science/models/mpi-

esm.html	

(1.865°	x	1.875°)	

Calculation	of	Climate	Projections	for	Station	Data	

Climate	change	factors	were	obtained	from	gridded	data	sets	in	the	CIMP5	multi-model	ensemble6		

(see	Taylor	et	al.	2011)	and	applied	as	monthly	climate	change	factors	to	the	daily	data	for	each	of	

the	sites.	

The	method	used	to	perturb	the	present	climate	to	a	future	climate	results	in	a	shift	that	can	be	seen	

on	a	monthly	scale	(Figures	14	and	15).	This	is	because	the	change	factor	applied	to	daily	

temperatures	is	the	same	within	each	month.	

Figures	14	and	15	demonstrate	that	until	2030	the	choice	of	the	RCP	has	little	impact,	but	by	2050,	

the	differences	caused	by	the	higher	emissions	in	the	RCP8.5	pathway	can	be	clearly	seen.	

																																																								

6	http://nrm-erddap.nci.org.au/erddap/index.html	
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Figure	14.	Mean	monthly	minimum	temperatures	for	Applethorpe	for	2030	under	RCP4.5	(left)	and	
RCP8.5	(right).	

	 	

Figure	15.	Mean	monthly	minimum	temperatures	for	Applethorpe	for	2050	under	RCP4.5	(left)	and	
RCP8.5	(right).	
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Future	Climate	Projections	and	the	Impact	
on	Flowering	
The relationship between chilling and flowering can been described mathematically (Pope	et	al.	

2014) such that the amount of chill that accumulates affects the flowering date because the 

amount of heat required to promote 

flowering is altered.	(Darbyshire	et	al.	

2016) found that for Cripps Pink 

apples the minimum amount of chill 

required is 34 Chill Portions. Less 

than this critical amount of chill 

cannot be compensated for with 

heating and there is no effective 

flowering. If additional chill is 

accumulated, then there is a lower 

requirement for heat. This 

relationship between the 

accumulation of chill and the heat 

requirement is referred to as the 

Chill-Overlap Model, Figure	16. 

Future	chill	accumulation,	as	measured	by	Chill	Portions	(CP),	will	decline	in	2030	and	2050	under	

both,	the	RCP	4.5	and	RCP	8.5	scenarios	at	growing	regions	across	Australia	(Table	3).	The	highest	

declines	will	be	for	Manjimup,	Applethorpe	and	Mt	Barker,	although	all	sites	show	a	decline.	The	

smallest	declines	are	at	Orange	and	Huonville	which	decline	by	less	than	5%	in	2030	and	by	less	than	

15%	in	2050	under	either	RCP4.5	or	RCP8.5.	

Using the mathematical relationships embodied in the Chill-Overlap model (Figure	16) it is 

possible to compare how full bloom dates might change in the future and whether the 

increased temperatures during spring and summer can compensate for the reduced chill 

accumulation (Table	5). 

  

Figure	16	The	Chill-Overlap	Model.	Cr	is	the	chill	required	
for	flowering.	Co	is	the	maximum	additional	chill	that	will	
reduce	the	heat	requirement.	Hr	is	the	heat	required	when	
Co	chill	is	accumulated	and	Ho	is	the	heat	required	when	
chill	is	an	Cr	(Redrawn	from	Darbyshire	et	al.	2016). 
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Table	3	Summary	of	average	chill	portions	(1	March	–	31	August)	for	2030	and	2050	using	a	moderate	
(RCP4.5)	to	worst	case	scenario	(RCP8.5)	modelling	approach	based	on	historical	data	from	1985	to	
2014.	Mean	of	30	years	with	lowest	and	highest	in	parentheses.	

	 Present	

2030	 2050	

RCP4.5	 RCP8.5	 RCP4.5	 RCP8.5	

Applethorpe	 72	(62-83)	 63	(48-75)	 60	(44-73)	 56	(41-69)	 51	(36-65)	

Shepparton	 84	(73-93)	 75	(63-85)	 74	(62-86)	 71	(58-81)	 67	(57-79)	

Manjimup	 67	(55-82)	 57	(43-76)	 55	(42-75)	 50	(36-72)	 47	(33-68)	

Huonville	 105	(94-113)	 98	(81-112)	 97	(78-110)	 93	(74-105)	 90	(71-104)	

Orange	 100	(90-110)	 94	(85-104)	 93	(82-101)	 90	(81-99)	 87	(78-94)	

Mount	Barker	 84	(67-93)	 74	(55-88)	 73	(53-88)	 70	(53-84)	 65	(47-80)	

	

The	concept	of	safe	winter	chill	(SWC)	was	introduced	by	Luedeling	et	al.	(2009)	a	measure	that	can	

be	thought	of	as	the	number	of	chill	portions	that	a	grower	could	expect	in	90%	of	years.	

Table	4	Safe	winter	chill	calculations	for	the	period	1985	to	2014.	

	 Present	

2030	 2050	

RCP4.5	 RCP8.5	 RCP4.5	 RCP8.5	

Applethorpe	 67	 55	 55	 47	 46	

Shepparton	 76	 67	 68	 66	 59	

Manjimup	 60	 49	 52	 44	 41	

Huonville	 99	 91	 94	 88	 86	

Orange	 94	 87	 87	 85	 81	

Mount	Barker	 74	 62	 66	 60	 56	

	

Reductions	in	the	SWC	in	Applethorpe,	Manjimup	and	Mount	Barker	were	similar	and	ranged	from	

16%	to	17%	in	2030	and	18%	to	32%	in	2050.	
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Orange,	a	location	with	a	high	chill	accumulation	the	average	date	of	full	bloom	is	advanced	(earlier	

bloom)	by	4	to	5	days.	Other	locations	showed	a	delayed	full	bloom	date	with	the	greatest	impact	felt	

at	Manjimup,	the	location	with	the	least	chill	at	present	and	into	the	future.	

Table	5	Summary	of	average	date	of	full	bloom	(Cripps	Pink)	for	2030	and	2050	using	a	moderate	
(RCP4.5)	to	worst	case	scenario	(RCP8.5)	based	on	historical	data	from	1985	to	2014.	

Average	

Predicted	Full	

Bloom	Date	 Present	

2030	

	

2050	

	

RCP4.5	 RCP8.5	 RCP4.5	 RCP8.5	

Applethorpe	 4	Oct	 7	Oct	 9	Oct	 12	Oct	 16	Oct	

Shepparton	 30	Sep	 3	Oct	 3	Oct	 5	Oct	 6	Oct	

Manjimup	 16	Oct	 22	Oct	 25	Oct	 30	Oct	 2	Nov	

Huonville	 26	Sep	 27	Sep	 29	Sep	 29	Sep	 29	Sep	

Orange	 2	Oct	 28	Sep	 28	Sep	 28	Sep	 27	Sep	

Mount	Barker	 1	Oct	 5	Oct	 4	Oct	 6	Oct	 8	Oct	

	

Delays	in	full	bloom	date	are	caused	when	less	winter	chill	is	accumulated	during	the	autumn	and	

winter	period	and,	consequently,	more	heat	is	needed	to	promote	flowering.	Manjimup	is	likely	to	

experience	the	greatest	delay	in	full	bloom	dates	in	future	climates	compared	with	other	locations.	

This	is	because	chill	accumulation	above	34	CP,	this	is	Cr	Figure	16-	the	chill	overlap	model,	in	

Manjimup	drops	from	22	CP	in	the	present	climate,	to	14	–	16	CP	in	2030,	and	10	–	12	CP	in	2050.	To	

compensate	for	this,	a	greater	about	of	heat	needs	to	be	accumulated	(i.e.	moving	from	Hr	towards	

Ho	in	Figure	16)	and	this	required	an	extra	6	to	9	days	in	2030,	and	14	to	17	days	in	2050.	In	

comparison,	at	Orange	the	much	cooler	winter	temperatures	and	high	chill	accumulation	lowered	the	

requirement	for	heat.	This	helped	to	advance	the	date	full	bloom	because	of	higher	spring	

temperatures	(Figure	9	and	Figure	10).	

Future	Projections	of	Impact	on	Quality	
One	of	the	main	risks	for	production	is	extreme	heat	days	as	this	leads	to	sunburn	browning.	Sun	

damage	risk	in	Royal	Gala	was	studied	in	apple	growing	regions	in	Australia	(Darbyshire	et	al.	2015).	

They	devised	a	browning	risk	day	for	non-netted	and	netted	orchards	based	on	air	temperatures	and	
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found	that	daily	maximum	temperatures	greater	than	34.1°C	in	non-netted	orchards	and	37.9°C	in	

netted	orchards	were	associated	with	an	increased	risk	of	browning.	While	that	study	and	Webb	et	

al.	(2016)	considered	January	temperatures,	we	have	extended	the	analysis	to	include	February	as	

this	coincides	with	the	fruiting	period.	Using	the	daily	maximum	temperatures	for	January	and	

February	from	1981	to	2010	(present)	and	future	climates	in	2030	and	2050	we	calculated	the	

browning	risk	as	the	percentage	of	days	that	exceeded	the	temperature	thresholds	with	and	without	

netting.	Following	Webb	et	al.	(2016),	we	classified	browning	risk	in	5	categories:	

£	5%	 >	5	to	10%	 >	10	to	20%	 >	20	to	30%	 >	30	to	50%	

 

Table	6.	Summary	of	mean	values	for	browning	risk	(percentage	of	days)	for	January	and	February.	

Without	Netting	 	 2030	 2050	

Site	 Present	 RCP4.5	 RCP8.5	 RCP4.5	 RCP8.5	

Applethorpe	 1.1	 2.4	 2.8	 2.8	 4.9	

Shepparton	 18.3	 23.9	 26.8	 27.5	 35.8	

Manjimup	 10.0	 15.2	 15.2	 16.6	 19.8	

Huonville	 2.4	 3.4	 3.8	 4.5	 4.2	

Orange	 2.4	 3.8	 4.4	 3.7	 8.4	

Mt	Barker	 17.3	 20.7	 22.9	 23.2	 25.8	

	 	 	 	

With	Netting	 	 2030	 2050	

Site	 Present	 RCP4.5	 RCP8.5	 RCP4.5	 RCP8.5	

Applethorpe	 0.0	 0.0	 0.1	 0.1	 0.4	

Shepparton	 4.8	 7.0	 9.0	 8.8	 13.2	

Manjimup	 1.6	 3.8	 3.9	 4.4	 6.0	

Huonville	 0.3	 0.6	 1.0	 1.2	 1.1	

Orange	 0.1	 0.1	 0.1	 0.1	 0.7	

Mt	Barker	 5.4	 7.2	 9.1	 9.4	 10.7	
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Shepparton,	Mount	Barker	and	Manjimup	will	be	most	adversely	affected	without	netting,	however,	

this	can	be	largely	offset	with	netting.	Without	netting	Manjimup	moves	to	the	same	category	by	

2030	that	Shepparton	and	Mount	Barker	currently	experience.	Applethorpe,	Huonville	and	to	a	lesser	

extent	Orange	are	in	low	risk	categories	and	are	likely	to	remain	that	way	in	the	future.	

Discussion	and	Conclusions	
Climate	change	represents	an	important	factor	for	perennial	tree	crops	whether	that	is	because	of	

reduced	chill	or	increased	risk	of	sunburn	browning.	There	has	been	a	tendency	to	consider	that	

apples	generally	have	a	high	chilling	requirement,	yet	successful	crops	are	grown	in	South	Africa	

(Cook	2010)	and	Manjimup	where	the	chill	is	low	in	comparison	to	traditional	growing	regions.	Low	

chill	can	cause	a	range	of	problems,	including	delayed	or	erratic	bud	break,	bud	abscission,	lower	

flower	and	fruit	quality	and	reduced	yield	(see	table	in	Atkinson	et	al.	2013).	Safe	winter	chill	

(Luedeling	et	al.	2009)	under	future	climates	is	a	possible	indication	of	what	to	expect.	Applethorpe	

records	a	lower	SWC	in	2030	for	the	more	optimistic	RCP4.5,	than	present	day	Manjimup	(Table	4).	

Perennial	tree	crop	industries	are	particularly	vulnerable	to	climate	change	because	of	the	cost	and	

longevity	of	orchard	establishment.	While	many	growers	have	been	adapting	to	the	trends	already	

evident	in	a	highly	variable	climate,	the	impact	of	future	climate	might	be	underestimated	because	of	

the	language	used	by	climate	scientists	and	the	media.	A	1-2°C	increase	in	temperature	might	seem	

trivial	considering	daily	fluctuations,	however,	as	can	be	seen	from	the	analyses	these	can	

accumulate	across	the	season	and	have	larger	impacts	through	delayed	flowering	and	increased	risk	

of	sun	damage.	

The	impact	of	changes	in	temperatures	on	flowering	in	the	future	are	complicated	by	the	interaction	

between	a	reduction	in	chill	accumulation	during	winter	and	increased	spring	and	summer	

temperatures.	While	the	chill-overlap	model	is	useful	in	understanding	these	relationships,	it	is	based	

largely	on	hypothetical	processes.	Gaps	in	our	knowledge,	such	as	understanding	when	plants	start	

and	stop	chill	accumulation	need	to	be	based	on	physiology,	i.e.	the	understanding	of	the	chemical	

processes	(Atkinson	et	al.	2013).	This	has	proved	difficult	because	there	are	no	outward	signs	that	

can	be	used.	It	is	hoped	that	chemical	markers	for	these	processes	can	be	found	so	that	our	

understanding	will	be	greatly	advanced.	This	would	have	the	advantage	of	being	able	to	make	better	

estimates	of	how	things	might	change	in	the	future	and	possibly	lead	to	breakthroughs	in	breeding	

programs.	At	a	more	fundamental	level,	our	current	best	model	for	measuring	and	predicting	chill	

accumulation,	the	Dynamic	Model,	uses	parameters	that	have	only	been	parameterised	for	peach	
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because	the	onerous	experimental	procedures	required	to	derive	them.	Furthermore,	it	relies	on	a	

hypothetical	factor	that	may	or	may	not	exist.	The	model,	especially	as	part	of	the	chill	overlap	

model,	remains	the	most	useful	way	of	predicting	flowering.	

Take-home	messages	from	the	historical	record:	

• All	pome	fruit	growing	regions	have	generally	seen	an	increasing	trend	in	maximum	

temperatures	in	winter	and	maximum	and	minimum	spring	temperatures.	

• The	strongest	downwards	trend	in	chill	accumulation	has	occurred	at	the	milder	locations	of	

Applethorpe,	Manjimup	and	Mount	Barker.	

• Spring	and	summer	maximum	temperatures	at	all	locations,	except	Huonville,	show	an	

upward	trend.	This	is	particularly	noticeable	for	Manjimup	which	has	recorded	a	higher	than	

long-term	average	maximum	since	2009.	

• Extreme	heat	is	an	emerging	problem	in	Manjimup	and	growing	regions	in	NSW.	Heat	damage	

has	been	a	problem	in	Victoria	and	the	increase	observed	in	Manjimup	has	prompted	detailed	

studies	of	how	and	when	browning	occurs	and	a	trial	of	nets	in	those	areas.	

Take-home	messages	from	the	future	scenarios:	

• Small	increases	in	average	temperatures	multiply	their	effect	through	the	accumulation	of	

time	above	or	below	thresholds.	

• The	response	of	the	pome	fruit	tree	to	reduced	chill	may	be	partially	offset	by	increased	

spring	and	summer	temperatures,	but	our	current	best	understanding	of	this	suggests	that	

this	cannot	occur	indefinitely.	

• Up	to	2030-2040,	the	differences	between	the	climate	change	scenarios	are	small.	The	

children	of	the	growers	who	are	farming	today,	may	in	2050,	be	facing	a	very	different	

growing	environment.	In	Applethorpe,	where	a	low	chill	year	is	60	CP	now,	will	feel	like	a	good	

year	and	the	worst	years	will	be	like	nothing	that	has	been	encountered	before.	

• There	is	a	complex	interplay	between	chilling	and	warming	on	the	timing	of	flowering	that	we	

are	only	just	starting	to	understand.	Much	of	our	knowledge	of	how	pome	fruit	trees	respond	

has	been	in	conditions	where	chill	has	been	more	than	adequate.	The	chill	overlap	model	has	

been	useful	as	model	of	this	situation,	but	the	biological	basis	is	uncertain.	

• Extreme	heat	will	continue	to	be	a	problem	in	hot	summer	regions	such	as	Shepparton	where	

it	already	presents	challenges	for	fruit	quality,	and	is	an	emerging	problem	for	regions	like	

Manjimup	which	currently	have	a	milder	summer	climate.	The	impact	on	marketable	quality	is	

well	known	and	investment	in	netting	seems	to	be	the	most	practical	solution.	
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Summary 

Australia has warmed by 1°C in the last 100 years and temperatures are predicted to continue 

warming. This will result in reduced winter chill for many apple and pear growing regions of Australia 

and it is not clear how this will impact on pome fruit production. To better understand how climate 

change will impact flowering in pome fruit trees, research was undertaken to evaluate the timing and 

quality of flowering in cultivars of apple and pear across Australia, and how they relate to 

temperatures received in the orchard. Green tip, flowering and temperature data was collected in the 

spring of 2012, 2013, 2014 and 2015 for cultivars of apple and pear grown in the climatically distinct 

regions of Applethorpe (Queensland), Shepparton (Victoria) and Manjimup (Western Australia).   

For all years of the study, Shepparton received the most winter chill with 89 chill portions on average, 

followed by Applethorpe (75 chill portions) and Manjimup (63 chill portions). Low winter chill in 

Manjimup was associated with greater variation in green tip and full bloom dates between years, 

cultivars and individual trees, compared with observations from Applethorpe and Shepparton. 

Additionally, trees in Manjimup displayed a long and protracted flowering period compared with the 

other sites. The patterns of flowering observed in Manjimup are possibly the result of inadequate chill. 

Shepparton, the site with the most winter chill, showed the greatest consistency in green tip and 

flowering dates.  

Results from this research support findings from previous studies, performed in other parts of the 

world, showing that apples grown in warmer climates exhibit increased variability in flowering. Uneven 

and irregular flowering results in the reduced ability to predict timing of orchard operations, more 

difficult pollination management, challenges for thinning and crop load management, and can result in 

increased variability of fruit maturity at harvest. 

As the climate warms, low chill years will become more frequent in milder growing regions of 

Australia, and will likely result in symptoms of inadequate chill in some cultivars. Advances in the 

timing of flowering might be observed in cooler growing regions. Australian growers already manage 

seasonal changes in flowering time and it may be the increasingly protracted and variable flowering 

that presents the greater management challenge. 

Options for adaptation to low chill years include planting lower chill cultivars, management of delayed 

and variable flowering with the use of dormancy-breakers, and adjustments to chemical and hand 

thinning practices to reduce variability in fruit size and maturity.  

Climate change will add significant variability into the pome fruit crop production system. This will 

present challenges for the Australian industry in its ability to consistently supply high quality fruit into 

export markets, and in maintenance of the uniform orchard blocks required to maximise the benefits 

of mechanisation.  Ongoing observations of flowering performance and its relationship with chilling, 

will be necessary for making informed predictions about future block and cultivar profitability.  
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Introduction 

Flowering timing and quality in apple and pear trees is determined by interactions between the 

genetics of a cultivar and the temperatures it experiences in the orchard throughout the year. 

Cultivars require a certain amount of winter chill and a certain amount of heat for bud dormancy 

release and flowering, and these requirements are largely genetically determined (Cannell 1989, 

Saure 1985, Samish 1954). Day length is not believed to have a significant role in the timing of 

flowering in apple (Dennis 2003).  

Australia has warmed by 1°C in the last 100 years, and temperatures are predicted to continue 

warming (State of the climate 2016). This will result in reduced winter chill for many apple and pear 

growing regions of Australia (Darbyshire et al. 2013b, Hennessy and Clayton-Greene 1995). It is not 

yet clear what the impact of this will be on the timing and quality of bud dormancy release and 

flowering in commercial pome fruit cultivars, and therefore the potential impacts on productivity. 

Advances in flowering time with increased temperatures has been observed in temperate fruit trees 

globally (Legave et al. 2013), however, effects of recent warming in Australia on pome tree flowering 

are not as clear (Darbyshire et al. 2013a).  

Changes in timing of flowering may have impacts on yield through the loss of flowering overlap 

between a cultivar and its pollinisers, and potential for increased frost risk (Kaukoranta et al., 2010). 

Variable and protracted patterns of flowering are likely to occur in locations where the warmer climate 

leads to inadequate chill (Erez 2000). Poor quality of flowering impacts production and profitability 

through reductions in fruit set, difficulties with chemical thinning, and greater variability of fruit maturity 

at harvest (Theron 2013, Oukabli 2003). 

Understanding potential impacts of climate change is essential for the timely implementation of 

appropriate adaptation strategies (Cobon et al. 2009). To understand how warming temperatures 

might impact on flowering, it is necessary to first understand the existing flowering behaviour of pome 

fruit tree cultivars across Australia, and how it relates to temperatures received in the orchard.  

Study objectives 

The objective of this research was to evaluate the timing and quality of green tip and flowering in 

cultivars of apple and pear across Australia and how they relate to temperature, to contribute towards 

understanding of how climate change will impact on pome fruit production.   

Materials and methods 

Site description 

Green tip and flowering data was collected in the spring of 2012, 2013, 2014 and 2015 for cultivars of 

apple and pear grown in commercial orchards and research facilities situated in Applethorpe 

(Queensland), Shepparton (Victoria) and Manjimup (Western Australia) (Figure 1 and Table 1).   
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Figure 1. Site locations across Australia (large blue dot). 

 

Table 1. Site details. 

State Location Orchard Latitude and 
Longitude 

Cultivars 

Qld Applethorpe Department of 
Agriculture and Fisheries 
Qld, Applethorpe 
Research Facility 

28.52 S  151.90 E
  

All apples and pears 
(except Josephine) 

C Pozzebon & Co Orchard 28.63 S  151.97 E Josephine pear 

Vic Shepparton Silverstein’s orchard, 
Shepparton East 

36.42 S  145.46 E All apples and pears 

WA Manjimup Department of Agriculture 
and Food WA, Manjimup 
Horticultural research 
Institute 

34.18 S  116.07 E All apples 

Newton Brothers 
Orchards 

34.13 S  116.07 E All pears 

  

The three study sites are climatically diverse with Shepparton experiencing the hottest summers and 

Manjimup the warmest winters. Applethorpe has the highest average spring temperatures (Figure 2).  

 



 

Flowering in pome fruit trees across Australia, Department of Agriculture and Fisheries, 2016 3 

 

Figure 2. Mean monthly temperatures for Shepparton, Applethorpe and Manjimup.  

 

Green tip and flowering data collection  

Cultivars (including crab apple pollinisers) and rootstocks used for phenology data collection are 

described in Table 2. All observations were taken on mature productive trees.  
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Table 2. Description of trees used for phenology observations. 

Study site Tree crop Cultivar Rootstock1 Number of trees  
(yearly observation) 

Net 

Applethorpe Apple Braeburn M.26 5 Yes 

Cripps Pink (Pink Lady™) M.26 
MM.106 

5 
3 

Yes 

Cripps Red (Sundowner™) M.26 
MM.106 

5 
5 

Yes 

Fuji M.26 5 Yes 

Galaxy (Gala) M.26 5 Yes 

Granny Smith M.26 
MM.106 

4 
5 

Yes 

Hi Early (Red delicious) M.26 5 Yes 

Jonathan M.26 5 Yes 

Kalei M.26 
MM.106 

5 
5 

Yes 

Manchurian Crab apple MM.102 5 Yes 

Pear Josephine D6 5 Yes 

Packham’s Triumph D6 5 No 

Williams’ Bon Chrétien D6 5 No 

Wintercole D6 5 No 

Shepparton Apple Braeburn MM.106 5 Yes 

Cripps Pink (Pink Lady™) MM.106 5 Yes 

Cripps Red (Sundowner™) M.26 
MM.106 

5 
5 

Yes 

Galaxy (Gala) MM.106 5 Yes 

Granny Smith MM.106 5 Yes 

Manchurian Crab apple  MM.106 5 Yes 

Pear Josephine D6 5 Yes 

Packham’s Triumph D6 5 Yes 

Williams’ Bon Chrétien D6 5 Yes 

Manjimup Apple 
  

Braeburn MM.109 2 No 

Cripps Pink (Pink Lady™) MM.104 
M.26 

2 
2 

No 

Cripps Red (Sundowner™) MM.104 
M.26 

3 
1 

No 

Galaxy (Gala) MM.104 2 No 

Granny Smith MM.104 2 No 

Hi Early (Red delicious) MM.104 2 No 

Jonathan MM.106 2 No 

Golden Hornet Crab apple MM.104 2 No 

Red Fuji (Fuji) MM.104 2 No 

Pear Josephine D6 5 No 

Packham’s Triumph D6 5 No 

Williams’ Bon Chrétien D6 5 No 
1 Rootstock effects were not considered in this analysis as previous studies indicated that rootstocks did not 
significantly impact the timing of green tip and flowering dates in data collected for this study (Darbyshire 2016). 
 

Green tip and flowering data was collected three times per week at the whole tree level. For each 

tree, the date of green tip, first open flower and full bloom were recorded. A tree was defined as being 

at ‘green tip’ when 5% of the buds had observable green tips, corresponding to the 07 stage in the 

international BBCH code for pome fruit (Meier et al. 1994). A tree was defined as being at ‘full bloom’ 

when 80% of the flowers were open, (BBCH code stage 65). 
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Assessments of flowering quality were made based on the duration between first open flower and full 

bloom, on the assumption that a protracted period of time between these events was a reflection of 

variable and uneven flowering. This assumption was based on our observations of flowering in 

Manjimup and Applethorpe. 

A 95% confidence interval was used to represent variability in data about the mean. It indicates that 

95% of the data values recorded, fall within this particular interval.    

Ideally, green tip and flowering data would have been collected from a number of orchards across 

each region to fully capture variation within regions caused by microclimate, soils, differences in tree 

structure, nutrition, and so on. Time and resources required to collect such data were not available 

and therefore observations were taken from representative orchards in each region. In future, more 

comprehensive data will be collected on orchards through the use of sensing and mapping 

technologies, which will enable more sophisticated and comprehensive analysis of flowering patterns 

and variability between and within locations.   

Calculation of winter chill 

The Dynamic model (Erez et al. 1990, Fishman et al. 1987) was used to calculate winter chill from on-

site hourly temperature data recorded in the orchard. This is the current ‘best-practice’ model and has 

been shown to perform better than other models for calculating winter chill, particularly in mild winter 

climates such as Australia (Darbyshire et al. 2013a, Luedeling et al. 2009).  

Note that, while chill is commonly referred to as ‘winter chill’, it has been calculated here from the 

beginning of autumn until the end of winter (1 March to 31 August). The point at which tree buds 

become sensitive to chilling temperatures remains to be determined.  

Results and discussion 

Winter chill and spring heat  

 

Figure 3. Chill accumulation across sites and years. Number in brackets is the total chill portions 
received up to 31 August. 
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The pattern of winter chill accumulation was different between locations and years (Figure 3). For all 

years of the study, Shepparton was the coolest site, followed by Applethorpe and Manjimup. 

Shepparton and Applethorpe received above-average chill portions for the four year period, while 

Manjimup received below-average chill in 2013 and 2014. Historical chill portion averages for the 

1981 to 2010 period are Shepparton 78, Applethorpe 70 and Manjimup 64. 

Lower winter chill tended to be associated with a later start to chill accumulation (that is a warmer 

autumn), and a more uneven chill accumulation curve. For example, 2012, 2013 and 2014 in 

Manjimup were distinguished by the irregular accumulation of chill portions caused by climatic 

conditions where cold autumn and winter temperatures were interspersed with spells of warm 

weather. This resulted in somewhat ‘wobbly’ chill accumulation curves.    

In this study, winter chill accumulation was calculated from 1 March to 31 August according to 

previously published protocols (Darbyshire et al. 2016). Questions remain about when to start and 

stop calculating chill. It is not clear that it is meaningful to start calculating chill for late season 

cultivars before fruit has been harvested, and / or before leaves have fallen, or indeed to stop 

calculating chill before a cultivar such as ‘Hi Early’ has reached green tip. It seems likely that the 

period of sensitivity to chill accumulation will vary between cultivars, however, with current gaps in 

understanding of the physiological processes involved in the movement through dormancy, it is not 

possible to determine cultivar-specific chilling periods. 

It is also quite likely that there are differences in the impact of chilling temperatures on the dormancy-

breaking process depending on the time of year. For example, chill received earlier in the winter may 

be more effective than chill received in late winter. Further research is required to fully elucidate these 

features of dormancy-breaking in pome fruit. 

   

Table 3. Average spring temperatures1 for 2012 to 2015 in Applethorpe, Shepparton and 

Manjimup. 

Location Year Average monthly temperature 

September October November 

Applethorpe Long term average2 12.4 15.4 17.7 

2012 12.8 15.2 19.2 

2013 14.9 17.1 18.5 

2014 12.5 17.5 21.8 

2015 11.8 17.0 20.2 

Shepparton Long term average2 11.4 14.2 17.5 

2012 11.8 13.9 19.1 

2013 13.3 14.1 16.8 

2014 12.1 16.0 18.9 

2015 11.5 18.6 18.9 

Manjimup Long term average2 11.9 13.6 16.0 

2012 12.9 15.5 16.3 

2013 12.6 15.0 18.0 

2014 13.6 15.4 16.3 

2015 13.2 17.1 18.6 
1Temperature data sourced from Australian Bureau of Meteorology website 
2As determined by the Australian Bureau of Meteorology 
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According to the long term average, Applethorpe has the warmest spring, compared with Shepparton 

and then Manjimup (Table 3). With few exceptions, spring temperatures were above-average at all 

sites throughout the period of the study.  

  

Green tip and flowering 

Differences in chill accumulation and spring heat between locations and years were accompanied by 

variability in the timing and pattern of green tip and flowering of apple and pear cultivars. Results were 

analysed to develop a picture of green tip and flowering patterns in Applethorpe, Shepparton and 

Manjimup over the four years of the study. 

Green tip and flowering time  

Variation between cultivars and locations  

Green tip and flowering dates were later in Manjimup than in Applethorpe and Shepparton (Figure 4). 

Across all cultivars, the average green tip date was 4 September in Applethorpe, 3 September in 

Shepparton and 25 September in Manjimup, while the average full bloom date was 1 October in 

Applethorpe and Shepparton, and 25 October in Manjimup.     

Variability in green tip and full bloom dates between years and individual trees was greater in 

Manjimup compared with Applethorpe and Shepparton, as reflected by the length of the bars in Figure 

4. Variability in green tip and full bloom dates between cultivars was also greater in Manjimup 

compared with the other sites. Average green tip dates for all cultivars were spread across 32 days in 

Manjimup compared with 15 days in Applethorpe and 5 days in Shepparton. Similarly, average full 

bloom dates were spread across 19 days in Manjimup compared with 9 days in Applethorpe and 7 

days in Shepparton.  

Overall, Shepparton, the site with the greatest winter chill, showed the most consistency in green tip 

and flowering time from year to year, while the relatively low chill in Manjimup was associated with the 

greatest variability. Greater consistency has benefits for flowering and pollination management, 

including determination of appropriate polliniser plantings and planning of pollination services. It also 

benefits tactical decision making for orchard operations generally. Improvements in the ability of 

models to predict flowering dates would remove the uncertainty associated with variability, making it 

easier to manage. 
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Figure 4. Green tip (green) and full bloom (pink) dates for apple cultivars in Applethorpe, Shepparton 
and Manjimup. Data is the average of observations from 2012 to 2015 with bars indicating the 
confidence interval. 
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Differences in Green tip and flowering patterns between locations were less consistent for pear 

cultivars (Figure 5). In Manjimup, full bloom dates for ‘Josephine’, ‘Packham’ and ‘Williams’ were later 

across all years compared with the other sites. Shepparton showed the least variability in full bloom 

dates across years, trees and cultivars.  

 

 

Figure 5. Green tip (green) and full bloom (pink) dates for pear cultivars in Applethorpe, Shepparton 
and Manjimup. Data is the average of observations from 2012 to 2015 with bars indicating the 
confidence interval. 

 

Variation between years 

Variability in the dates of green tip and flowering between individual years was evaluated to determine 

the degree to which growers are currently managing shifts in flowering timing from season to season 

at each location. 

In Applethorpe, green tip and flowering were consistently later across all cultivars in 2014 compared 

with the other years of the study (Figure 6 shows comparison between 2013 and 2014, data for other 

year comparisons not shown). On average, green tip was 9 days later in 2014 compared with 2013, 

and full bloom was 12 days later (Figure 6).  

This consistent shift in timing was associated with an unusual autumn and winter chill accumulation 

pattern (Figure 7). Total chill accumulated up to 31 August was similar in 2013 and 2014, 73 and 75 

chill portions respectively. However, in 2014 there was a warm week in late-May to early-June that 

resulted in a pause in accumulation of chill, which can be seen in the chill curve (Figure 7). Even 

though the total chill accumulated for 2014 eventually caught up with the other curves by the end of 

August, this plateau appears to have impacted the timing of flowering (although other factors such as 

the role of heat cannot be ruled out in this study). There was little difference in green tip and flowering 

dates between the other years.  

In Shepparton, there was little variability in green tip and flowering dates between any of the four 

years of the study. When averaged across cultivars, green tip varied by 5 days between 2013 and 

2014, and full bloom dates varied by 4 days (Figure 6). Plateaus in the accumulation of chill in late-

May, early-June of 2013 and 2014 (Figure 7) were not associated with big shifts in flowering time as 
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was observed for Applethorpe, perhaps due to the higher amount of overall chill received in 

Shepparton.      

In Manjimup, green tip and flowering dates were highly variable between years. 2013 was a lower chill 

year than 2014, with 55 and 59 chill portions received respectively. Shifts in green tip and full bloom 

dates were not consistent between cultivars (Figure 6). For example, in 2014, full bloom was 15 days 

earlier in ’Galaxy’ and 10 days later in ‘Hi Early’ compared with full bloom dates for those cultivars in 

2013, while the full bloom dates for ‘Granny Smith’ were similar in both years (Figure 6).  
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Figure 6. Green tip (green) and full bloom (pink) dates for apple cultivars grown in Applethorpe, 
Shepparton and Manjimup, 2013 and 2014. Data points are the average of individual tree 
observations.  
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Figure 7. Chill accumulation in Applethorpe, Shepparton and Manjimup, 2012 to 2015. Number in 
brackets is the total chill portions received up to 31 August. 
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Quality of flowering  

Variation between cultivars and locations 

The duration between the first flower opening and full bloom was more than twice as long in Manjimup 

(21 days) as it was in Applethorpe (9 days) and Shepparton (10 days), when averaged across 

cultivars and years (Figure 8). The protracted pattern of flowering was consistently observed in 

Manjimup over the period of the study and was largely the result of irregular and uneven bud 

movement within individual tree canopies (data not shown).   

A prolonged and irregular period of flowering can be difficult to manage for a number of reasons. 

Determining an appropriate chemical thinning program is challenging when buds are at multiple 

stages of green tip and flowering on each tree within the block, at any given time (Theron 2013). 

Fruitlets are likely to vary greatly in size and development stage, and therefore careful attention is 

required at the time of hand thinning to ensure that fruitlets are thinned in a manner that optimises 

crop uniformity and reduces the spread of fruit maturity at harvest (Theron 2013, Erez 2000). 
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Figure 8. First flower (orange) and full bloom (pink) dates for apple cultivars in Applethorpe, 
Shepparton and Manjimup. Data is the average of observations from 2012 to 2015. Bars indicate the 
confidence interval. 
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In cultivars of pear, the duration of the period between the first flower opening and full bloom was the 

greatest in Manjimup (Figure 9), as was observed in apple. However, the patterns of flowering were 

less consistent within and between locations. 

   

 

 

Figure 9. First flower (orange) and full bloom (pink) dates for pear cultivars in Applethorpe, 
Shepparton and Manjimup. Data is the average of observations from 2012 to 2015. Bars indicate the 
confidence interval. 

 

Flowering overlap and pollination 

Overlap of flowering between a cultivar and its pollinisers is essential for good fruit set (Ramirez and 

Davenport 2013). Changes in the timing of flowering between seasons or across years that result in 

the loss of flowering synchronisation can therefore result in reduced yields. Large shifts in flowering 

dates, like those observed between cultivars and years in Manjimup (Figure 8), increase the risk of 

poor flowering overlap in any particular season and make it more difficult to select appropriate 

pollinisers. Use of floral bouquets or artificial pollination methods can compensate for loss in flowering 

overlap, however, these methods require significant additional labour (Dennis 2003). 

The chances of achieving good flowering overlap each season are greatly increased by planting 

multiple polliniser cultivars with early, middle and late flowering habits, to ensure a good supply of 

pollen throughout the flowering period of the commercial cultivar, and to reduce frost risk (Delaplane 

and Mayer 2000, Dennis 2003). Cultivars that flower profusely over an extended period of time 

generally make good pollinisers (Jackson 2003).  

Shifts in flowering timing do not affect fruit set if similar shifts occur in both the cultivar and its 

pollinisers. This was observed in Applethorpe in 2014, when flowering in all cultivars was consistently 

delayed compared with flowering in 2013.  

Flowering and temperature: implications of a changing climate 

Apple trees in Manjimup exhibited greater variability in green tip and flowering dates, and a more 

protracted flowering period, compared with trees in Applethorpe and Shepparton. Delayed and 

uneven flowering are symptoms of inadequate chill and it seems likely that the observed patterns of 
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flowering in Manjimup were a response to mild autumn and winter conditions received throughout the 

period of this study. This finding is supported by numerous studies in the literature describing irregular 

flowering in apples grown in warm, low chill climates (Oukabli 2003, Saure 1985, Theron 2013, Erez 

2000). Abnormalities in the late stages of apple flower bud development have also been reported in 

low chill regions (Oukabli 2003) however, flower viability was not assessed in our study.   

The timing of flowering varied from year to year within each location, with the greatest differences 

observed in Manjimup. This variability was caused largely by differences in temperatures from season 

to season, and Australian growers have always had to manage these seasonal shifts in the timing of 

dormancy-break. The relative importance of cold and warm temperatures in determining the timing of 

flowering is likely to vary between locations and years. For example, in cold growing regions where 

plenty of winter chill is received and chilling requirements are well satisfied by the middle of winter, 

dormancy-break will be promoted by warm temperatures in late winter and early spring (Saure 1985). 

In this case, from around mid-winter onwards the trees are sitting in a phase of dormancy known as 

‘eco-dormancy’, that is the buds are ready to burst when the environmental conditions are right for 

growth.  

This response to heat is evident in cold pome fruit growing regions of the Northern Hemisphere, 

where clear advances in flowering dates have been observed with warmer spring temperatures 

caused by the changing climate (Legave et al. 2013).  

In warmer growing locations and years, the timing of dormancy-break and flowering are likely to be 

determined primarily by the accumulation of enough chill (Saure 1985). That is, dormancy tends to be 

prolonged and there is little or no eco-dormancy period, buds burst as soon as they have received 

enough chill (Theron 2013). It is likely that pome trees growing in the warmer regions of Manjimup, 

and Applethorpe in some years, do not experience any significant eco-dormancy.    

As the climate warms, most growing regions of Australia will receive less winter chill (Darbyshire et al. 

2013b). The impacts that this will have on flowering over the next 10 to 20 years will vary between 

different parts of the country. 

Cooler regions such as those in Tasmania and NSW with plenty of chilling may experience advances 

in the timing of flowering as spring temperatures increase. As chill accumulation falls below the 

chilling requirements of cultivars in warmer growing regions of Australia they will likely see increasing 

variability in green tip and flowering dates from season to season, and between cultivars. Delayed, 

uneven and protracted flowering will occur in the medium to higher chill cultivars, as was observed in 

Manjimup during this study. Low chill years will be experienced more often as the climate warms.  

Irregular and protracted flowering presents a significant management challenge for growers. Options 

for orchard adaptation to warming autumns and winters include the planting of lower chill cultivars, 

management of delayed and variable flowering with the use of dormancy-breakers, and adjustments 

to chemical and hand thinning practices to reduce variability in fruit size and maturity.  

It should be noted that, while exposure to enough chill is essential for quality flowering in pome fruit 

(defined here as the uniform blossoming of viable flowers), once chilling requirements have been met, 

the quality of flowering can be further influenced by other factors such as heat, nutritional status and 

water stress. These factors were not considered here. 

While this study looked at temperature and the timing and quality of flowering, climate change will 

have other impacts on flowering and pollination. Warming temperatures will potentially impact on floral 

initiation, bee activity and fruit set (Dennis 2003, Atkinson et al. 2001, Ramirez and Davenport 2013). 

In addition, this study did not collect data on leaf area development during the green tip and full bloom 

period. Weak leaf development is a symptom of delayed foliation (Saure 1985) caused by inadequate 

winter chill and reduced leaf area in the weeks after full bloom has been shown to have negative 

impacts on fruit set and development (Proctor and Palmer 1991, Lauri et al. 1996). Further research is 

required to fully determine the nature of these impacts on the Australian pome fruit industry. 
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The discussion and conclusions from this study were based primarily on the results from observations 

in apples. While results from the pear data were generally consistent with that observed in apples, 

further research would improve the understanding of flowering in this crop. Since the vast majority of 

pears are grown in Victoria (89%) (Australian Bureau of Statistics) there was less opportunity to 

collect extensive datasets from diverse climatic regions.    

Conclusions 

Results from this research support findings from previous studies performed in other parts of the 

world showing that apples grown in warmer climates exhibit increased variability in flowering within 

the canopy, between individual trees and between varieties and years (Erez 2000, Theron 2013, 

Cook and Jacobs 2000). Increased variability in flowering results in the reduced ability to predict 

timing of orchard operations, more difficult pollination management, challenges for thinning and crop 

load management, and can result in increased variability of fruit maturity at harvest. 

The Australian apple and pear industry is aiming to increase global competitiveness in an effort to 

help secure new export markets. Success in the global market requires consistent supply of high 

quality fruit from season to season at competitive prices. Additional variability in the crop production 

system from a warming climate will challenge the Australian industry’s ability to achieve the desired 

export goals on two fronts: consistency of supply, and in the maintenance of uniform orchard blocks 

that are a prerequisite for efficient use of labour-saving technologies. 

Variability caused by inadequate chilling can be managed with the use of additional input of products 

and labour, however, grower capacity to respond to these challenges will vary depending on 

individual social and financial factors. An important assessment for growers to make of their orchard 

businesses will be ‘at what point will the increased cost of inputs and effort required to produce a 

consistently high quality crop make a block of trees unprofitable?’ Ongoing orchard observations of 

flowering performance and relationships with winter chill will be necessary for making meaningful 

predictions about future block and cultivar profitability.   

Key messages 

- Low winter chill, as observed in Manjimup, was associated with an uneven (or ‘uneven’) chill 

accumulation curve caused by short periods of warm weather throughout the autumn and 

winter seasons.  

- Green tip and full bloom dates were more variable between years, cultivars and individual 

trees in Manjimup, and trees consistently displayed a long and protracted flowering compared 

with Applethorpe and Shepparton. 

- Shepparton, the site with the most winter chill, showed the greatest consistency in green tip 

and flowering dates from year to year.  

- The patterns of flowering observed in Manjimup are likely the result of inadequate chill. Low 

winter chill at this site was associated with: 

 High variability in flowering dates between seasons, cultivars and individual trees of 

the same cultivar. 

 Irregular and protracted flowering across most cultivars of apple.   

- Large shifts in flowering dates between cultivars and seasons, increases the risk of poor 

flowering overlap in any particular year and makes it more difficult to select appropriate 

pollinisers. Greater predictability in the timing of green tip and full bloom has benefits for 

flowering and pollination management, and for planning of orchard operations generally. 

- Irregular and protracted flowering can be difficult to manage for a number of reasons: 



 

Flowering in pome fruit trees across Australia, Department of Agriculture and Fisheries, 2016 18 

 Determining an appropriate chemical thinning program is challenging when buds are 

at multiple stages of green tip and flowering on individual trees. 

 Fruitlets will vary more in size and developmental stage, and careful hand thinning is 

required to optimise crop uniformity.  

 Greater spread of fruit maturity at harvest requires greater effort to pick fruit at the 

appropriate stage of maturity. 

- As the climate warms, low chill years will become more frequent in milder growing regions of 

Australia, and will likely result in symptoms of inadequate chill in some cultivars. Advances in 

the timing of flowering might be observed in cooler growing regions.     

- Australian growers already manage seasonal changes in flowering time and it may be the 

increased irregularity of flowering that presents the greater management challenge. 

- Options for adaptation to low chill years include planting lower chill cultivars, management of 

delayed and variable flowering with the use of dormancy-breakers, and adjustments to 

chemical and hand thinning practices to reduce variability in fruit size and maturity.  

- Risks to pollination from shifting flowering times can be reduced through planting multiple 

polliniser cultivars with early, middle and late flowering habits, to ensure a good supply of 

pollen throughout the flowering period. Use of floral bouquets or artificial pollination methods 

can compensate for loss in flowering overlap. 

- Climate change will add significant variability into the pome fruit crop production system. This 

will present challenges for the Australian industry in the consistency of supply and in 

maintenance of the uniform orchard blocks that are a prerequisite for the efficient use of 

mechanisation.   

- An important assessment for growers to make of their orchard businesses will be ‘at what 

point will the increased cost of inputs and effort required to produce a consistently high quality 

crop make a block of trees unprofitable?’ Ongoing observations of flowering performance and 

its relationship with chilling, will be necessary for making informed predictions about future 

block and cultivar profitability.   

Recommendations 

Industry 

- Warmer temperatures will mean less winter chill for most growing regions of Australia. 

Successful adaptation by the apple and pear industry will require:  

 Comprehensive in-orchard monitoring of flowering dates across cultivars to provide 

early indication of cultivars that might be impacted by warmer winters in the future 

changing climate, as well as identification of subtle shifts in the timing of flowering 

between cultivars and their pollinisers. 

 Information about chilling requirements of new and existing cultivars so that growers 

can make cultivar choices appropriate to their particular growing environment.   

 Consideration of chilling requirements in apple and pear breeding programs when 

selecting potential new cultivars for development and release. Selecting for lower chill 

cultivars. 

 Good understanding of the efficacy of dormancy-breaking sprays.  

- Growers in warmer growing regions of Australia would benefit from preparing a strategy for 

managing low chill years. Monitoring of winter chill accumulation and use of dormancy-
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breakers in low chill years is a logical inclusion. Changes to chemical and hand thinning 

practices may also form part of the strategy. 

- Where shifting full bloom dates are likely to be a problem, consideration should be given to 

planting more than one polliniser cultivar to improve the chances of flowering overlap every 

year.  

- Models of flowering time have significantly improved in recent times, with the development of 

the ‘Chill-overlap model’ (Darbyshire et al. 2016, White 2016). The use of these models will 

improve the ability to predict changes in the timing of flowering in cultivars of apple under 

future climates.  

- Climate analogues (Parkes and White 2016) should be used by the industry to broadly 

identify climate change impacts on apple and pear production systems and possible options 

for adaptation. Growers in Manjimup are already successfully managing the impacts of 

inadequate chill in some years, lessons can be learnt from their knowledge and experience.   

- In future, more comprehensive data should be collected on orchards through the use of 

sensing and mapping technologies. This data should be used to undertake more 

sophisticated and comprehensive analysis of flowering patterns and variability between and 

within locations.   

- Further research in Australian pears is needed to improve the understanding of flowering in 

cultivars of this tree crop, and the likely impacts of changing climate.  

- In blocks where flowering is becoming increasingly irregular, an important assessment for 

growers to make of their orchard businesses will be to determine at what point the increased 

cost of inputs and effort required to produce a consistently high quality crop make a block of 

trees unprofitable. Ongoing observations of flowering performance and its relationship with 

chilling, will be necessary for making informed predictions about future block and cultivar 

profitability.   

Scientific research needs 

- Better understanding of apple and pear chilling requirements is necessary for making 

appropriate cultivar selections for particular growing climates. This will require:  

 Research into the genetic basis of progression through the phases of dormancy.  

 Determination of the point when buds enter into true dormancy and become sensitive 

to chilling temperatures, and when buds exit true dormancy prior to bud burst. 

Genetic and/or physiological markers of these phase shifts are needed. 

 Improved chill model performance through cultivar specific parameterisation of the 

dynamic model.   

 Understanding of the effectiveness of early versus late season chill in dormancy 

breaking. 

- Development of chill-overlap models for flowering time of pome fruit cultivars other than 

‘Cripps Pink’. This will improve the predictability of climate change impacts on flowering 

timing. 

- Determine the potential effects of warming temperatures on leaf area development, floral 

initiation, flower viability, fruit set and bee activity, as these are likely to have significant 

impacts for productivity in apple and pear.    
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Summary 

Future changes in climate are predicted to result in reduced winter chill in apple and pear growing 

regions of Australia. Potential impacts on the pome fruit industry due to effects of reduced chill on bud 

dormancy release and flowering of fruit trees in these regions are not yet clear. Inadequate winter chill 

can result in variable and protracted flowering, potentially leading to impacts on fruit set and 

marketable yield at harvest. Climate analogues are one option for investigation of potential climate 

change impacts on agricultural production and appropriate adaptation strategies. This study 

investigated the potential for using the climate analogue concept, together with collected datasets, to 

predict impacts of climate change on pome fruit flowering in Australia and to identify possible methods 

for adaptation.  

The temperate tree fruit growing regions of Manjimup (WA) and Stanthorpe (QLD) were used as a 

case study to test this strategy. Based on mean autumn and winter temperatures alone Manjimup was 

considered to be an appropriate climate analogue for Stanthorpe in 2030. Flowering datasets from 

commercial apple and pear cultivars were collected at each site in 2013 and 2014. Whole tree field 

assessments were made of 5% green tip, first open flower and progression of flowering to full bloom 

using standardised methods across sites. The data show an uneven and protracted pattern of 

flowering in Manjimup compared with Stanthorpe. Average green tip dates for all cultivars were 

spread across 32 days in Manjimup compared with 15 days in Stanthorpe. Similarly, average full 

bloom dates were spread across 19 days in Manjimup and 9 days in Stanthorpe. The duration 

between the first flower opening and full bloom in Manjimup was more than twice as long as in 

Stanthorpe (an average of 25 days compared with 10 days) when averaged across years and 

cultivars. There were no clear differences in yield between the locations. Comparison of grower 

orchard management practices indicated that 50% of Manjimup growers use dormancy-breaking 

sprays compared with zero in Stanthorpe.   

Results from the climate analogue approach suggested that a more variable and protracted pattern of 

flowering is likely to exist across many apple cultivars in Stanthorpe in 2030. The more variable 

flowering will not necessarily have significant impacts on productivity of apple orchards in that 

timeframe and Stanthorpe growers are likely to be able to manage low chill years with the use of 

dormancy-breaking sprays. At this stage there is no apparent need to shift to lower chill cultivars (or 

crops) as Manjimup growers are achieving high levels of productivity with the same variety mix as is 

currently grown in Stanthorpe.  

The climate analogue approach is a valuable tool for providing broad information around potential 

impacts and adaptation strategies for Australian temperate tree crops and horticulture more generally. 

There are a number of important details to consider when applying this methodology and these are 

outlined in this report. 
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Introduction 

Future changes in climate are predicted to result in reduced winter chill in apple and pear growing 

regions of Australia (Darbyshire et al. 2013b, Hennessy and Clayton-Greene 1995). Potential impacts 

on the pome fruit industry in these regions are not yet clear. Inadequate winter chill results in variable 

and protracted flowering, potentially leading to impacts on fruit set and marketable yield at harvest 

(Theron 2013, Erez 2000, Saure 1985). Climate analogue analysis involves a detailed comparison 

between locations, where the current climate of one location is similar to the projected future climate 

of the location of interest (Nyairo et al. 2014). This is one option for investigation of potential climate 

change impacts on agricultural production and identification of appropriate adaptation strategies. 

Relationships between temperature and flowering in apple and pear trees are complex and poorly 

understood, making it difficult to determine future impacts of warming climate on flowering in these 

crops. A number of benefits of applying a climate analogue approach have been identified (Nyairo et 

al. 2014, Veloz et al. 2012) and suggest that it may be a useful approach in the investigation of this 

question. Some of the benefits are: 

 Ability to analyse climate change impacts, without the need for understanding of complex 

physiological processes underlying flowering.  

 Ability to analyse options and capacity for adaptation. The question can be asked how do 

growers in region X respond to a climate that is similar to ours in the future? Impacts and 

adaptation can be investigated simultaneously. 

 Impacts of climate change on flowering are analysed within the production system as a 

whole.  

 Provision of tangible, practical information for growers to work with and allows for growers at 

the test location to learn from growers at the analogue location.  

 Analogue location can be used as a research site for possible adaptation strategies.  

 Improved communication of climate change impacts and options for adaptation to growers. 

Although the concept has been around for some time, most studies have focussed broadly on whole 

farming systems (Nyairo et al. 2014), rather than investigating climate change impacts on a single 

cropping system or on one physiological aspect of a crop such as flowering.  

Study objectives 

The aim of this project was to investigate potential for using a climate analogue approach, together 

with collected data sets, to predict impacts of climate change on pome fruit flowering and to identify 

possible methods for adaptation. 

Methodology 

To test the potential of the climate analogue approach, a case study was undertaken in Stanthorpe, 

Queensland. The following questions were posed:  

1. How will flowering of apple and pear trees be impacted by reduced winter chill in Stanthorpe 

in 2030?  

2. Will there be an impact on productivity? 

3. What can growers do to adapt?  

4. Is the climate analogue approach appropriate in this context and can it be applied more 

broadly? 

5. Are there factors that should be considered when using climate analogues for informing 

climate change adaptation in horticulture? 

There were four parts to the investigation: the identification of an appropriate climate analogue 

location for Stanthorpe in 2030, comparison of the apple and pear industries in each location to 
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ensure a meaningful comparison, analysis and comparison of flowering behaviour and productivity in 

each location, and comparison of relevant orchard management practices to investigate possible 

climate change adaptations.    

Identification of an appropriate climate analogue location 

The ‘analogues explorer’ tool from the Climate change in Australia website1 was used to identify a 

broad pool of possible climate analogue locations for Stanthorpe in 2030.  

Winter chill projections for Stanthorpe in 2030 were constructed from four Global Climate Models 

selected from the list of models generated by the Climate Futures Tool at the Climate Change in 

Australia website1, for a Representative Concentration Pathway (RCP) of 4.5. The RCP4.5 emissions 

scenario assumes that lower greenhouse gas emissions are achieved in future due to some mitigation 

efforts. It is a minimum to medium case climate change scenario.   

Historical temperature data from 1986 to 2005 for Manjimup and Stanthorpe was obtained from the 

SILO climate database2. Point data for the years 2012, 2013 and 2014 was obtained from the weather 

station at Manjimup Horticultural Research Institute (Manjimup), and an on-site temperature logger in 

the orchard at Applethorpe Research Facility (Stanthorpe). 

The Dynamic model (Erez et al. 1990, Fishman et al. 1987)) was used to calculate winter chill from 

hourly temperature data recorded in the orchard from the beginning of autumn until the end of winter 

(1 Mar to 31 Aug). This is the current ‘best-practice’ model and has been shown to perform better 

than other models for calculating winter chill, particularly in mild winter climates such as Australia 

(Darbyshire et al. 2013a, Luedeling et al. 2009).  

Industry comparison 

Comparison of the apple and pear industries in Manjimup and Stanthorpe was made based on 

information sourced from the Australian Bureau of Statistics, a Shire Council report (Tancred and 

McGrath 2013), and personal communication with growers and local industry representatives.  

Comparison of flowering 

The flowering datasets were from orchards in Manjimup and Stanthorpe (Table 1) collected in spring 

2013 and 2014 from cultivars of apple and pear, as part of the project AP12029 Understanding apple 

and pear production systems in a changing climate (Table 2).  

Table 1. Description of sites used for flowering data observations.  

State Location Orchard Latitude and 
Longitude 

Cultivars 

Qld Stanthorpe Department of 
Agriculture and Fisheries 
Qld, Applethorpe 
Research Facility 

28.52 S  151.90 E
  

All apples and pears  

WA Manjimup Department of Agriculture 
and Food WA, Manjimup 
Horticultural research 
Institute 

34.18 S  116.07 E All apples 

Newton Brothers 
Orchards 

34.13 S  116.07 E All pears 

 

                                                      
1 http://www.climatechangeinaustralia.gov.au/en/climate-projections/climate-analogues/analogues-
explorer/ 
2 https://www.longpaddock.qld.gov.au/silo/ 
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Table 2. Description of trees used for flowering observations. 

Study site Tree 
crop 

Cultivar Rootstock1 Number of trees  
(for yearly observation) 

Net 

Stanthorpe Apple Braeburn M.26 5 Yes 

Cripps Pink 
(Pink Lady™) 

M.26 
MM.106 

5 
3 

Yes 

Cripps Red 
(Sundowner™) 

M.26 
MM.106 

5 
5 

Yes 

Fuji M.26 5 Yes 

Galaxy  
(Gala) 

M.26 5 Yes 

Granny Smith M.26 
MM.106 

4 
5 

Yes 

Hi Early  
(red delicious) 

M.26 5 Yes 

Pear Packham’s 
Triumph 

D6 5 No 

Williams’ Bon 
Chrétien 

D6 5 No 

Manjimup Apple 
  

Braeburn MM.109 2 No 

Cripps Pink 
(Pink Lady™) 

MM.104 
M.26 

2 
2 

No 

Cripps Red 
(Sundowner™) 

MM.104 
M.26 

3 
1 

No 

Galaxy 
(Gala) 

MM.104 2 No 

Granny Smith MM.104 2 No 

Hi Early 
(red delicious) 

MM.104 2 No 

Red Fuji  
(Fuji) 

MM.104 2 No 

Pear Packham’s 
Triumph 

D6 5 No 

Williams’ Bon 
Chrétien 

D6 5 No 

1Rootstock effects were not considered in this analysis as previous studies indicated that rootstocks did not 
significantly impact the timing of green tip and flowering dates in data collected for this study (Darbyshire 2016). 

 

Green tip and flowering data was collected three times per week at the whole tree level. For each 

tree, the date of green tip, first open flower and full bloom were recorded. A tree was defined as being 

at ‘green tip’ when 5% of the buds had observable green tips, corresponding to the 07 stage in the 

international BBCH code for pome fruit (Meier et al. 1994). A tree was defined as being at ‘full bloom’ 

when 80% of the flowers were open, similar to the 65 stage in the international BBCH code for pome 

fruit (Meier et al. 1994).  

Comparison of productivity and orchard management practice 

Broad yield data and information on orchard management practices was obtained from the Australian 

Bureau of Statistics, personal communication with growers and local industry representatives, and 

from a grower survey performed using digital audience response technology at the AP12029 project 



 

Climate change impacts on flowering in pome fruit trees: a climate analogue approach, 2016 7 

roadshow event held in Manjimup on 1 October 2014. Detailed yield and orchard practice data was 

not collected as part of this study.   

Results and discussion 

Identification of an appropriate climate analogue location for Stanthorpe 2030 

The Analogues Explorer tool was used to identify a broad pool of possible climate analogue locations 

for Stanthorpe in 2030. When climates were matched for annual temperature and rainfall, twelve 

analogue locations were listed including Bega, Manjimup, Mount Barker, Young and Albury-Wodonga.  

To ensure that the climate analogue selected could be used to specifically investigate the impacts of 

reduced chilling on flowering, the Analogues Explorer tool was set-up to identify analogues matched 

on autumn and winter temperatures only. Spring and summer temperatures were removed from the 

assessment, along with rainfall. A slightly different set of climate analogues was listed including 

Nuriootpa, Horsham, Naracoorte, Manjimup, Mount Barker and Sale. From this list, Manjimup, one of 

Australia’s main apple and pear growing regions, was selected as the climate analogue location for 

Stanthorpe in 2030 (Figure 1).    

 

 

 

Figure 1. Map of Australia showing the locations of Stanthorpe and Manjimup. Manjimup was 

identified as an appropriate climate analogue for Stanthorpe in 2030. 

 

It is worth noting that, when the seasons are considered separately Manjimup is a reasonable 

analogue for 2030 in Stanthorpe for summer, autumn and winter, but not for the spring. This is 

because, in the current climate, Stanthorpe has a warmer spring than Manjimup.  

Projections of winter chill using global climate models were undertaken to evaluate how well winter 

chill in Manjimup is likely to match chill received under a 2030 climate in Stanthorpe (Figure 2.). The 

historical chill portion data for the period 1986 to 2005 in Manjimup is similar to the chill data for 

Stanthorpe over this same period (Figure 2). However, 2012, 2013 and 2014 were low chill years in 

Manjimup. If the chill portion data for these years is considered separately, it falls neatly within the 

range of the projected winter chill results for Stanthorpe in 2030 (Figure 2). Therefore Manjimup in the 

years 2012 to 2014 was considered to be a good climate analogue for assessing the impacts of 

reduced winter chill on flowering in Stanthorpe in 2030. 
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Figure 2. Box plot showing winter chill projections from four climate models for Stanthorpe in 2030, 

compared with current winter chill in Manjimup. Orange, red and blue dots show winter chill data 

calculated from hourly temperature data collected on-site from 2012, 2013 and 2014 respectively. 

Historical boxplot data is for the period from 1986 to 2005.  

 

The apple and pear industries in Manjimup and Stanthorpe  

The apple and pear industries in Manjimup and Stanthorpe are comparable on most industry 

characteristics including gross value, orchard size, variety mix, rootstocks and planting systems 

(Table 3). One significant difference is in the use of orchard netting, Stanthorpe apples are grown 

almost entirely under hail netting, while most of the apple orchards in the Manjimup district are un-

netted (although this is changing rapidly).  

Table 3. Characteristics1 of the apple industries in Manjimup and Stanthorpe.                                                             

  Industry characteristic         Manjimup                                      Stanthorpe 

 
1Gross value is the average from the 2002-2003 to 2012-2013 seasons. 
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Apple and pear tree flowering in Manjimup and Stanthorpe 

In 2013 and 2014, Stanthorpe received 72 and 74 chill portions respectively, while Manjimup received 

54 chill portions in both years (well below its long-term average) (Figure 3). The low winter chill in 

Manjimup was associated with a greater spread of green tip and full bloom dates in both years (Figure 

3). Average green tip dates for all cultivars were spread across 32 days in Manjimup compared with 

15 days in Stanthorpe. Similarly, average full bloom dates were spread across 19 days in Manjimup 

compared with 9 days in Stanthorpe.  

 

Figure 3. Green tip, first flower and full bloom dates for cultivars of apple and pear in Manjimup and 

Stanthorpe in 2013 and 2014. Dates are given as the ‘day of year’, day 260 is 17 September and day 

300 is 27 October. Data points are the average of individual tree observations. CP is the total chill 

portions calculated up to 31 Aug. 

 

The duration between the first flower opening and full bloom in Manjimup was more than twice as long 

as in Stanthorpe (an average of 25 days compared with 10 days) when averaged across years and 

cultivars (Figure 4 and Figure 5). This protracted pattern of flowering was consistently observed in 

Manjimup over the period of the study and was largely the result of irregular and uneven bud 

movement within individual tree canopies (Figure 6).   

A prolonged and irregular period of flowering can be difficult to manage for a number of reasons. 

Determining an appropriate chemical thinning program is challenging when buds are at multiple 

stages of green tip and flowering on each tree within the block, at any given time (Theron 2013). 

Fruitlets are likely to vary greatly in size and development stage, and therefore careful attention is 

required at the time of hand thinning to ensure that fruitlets are thinned in a manner that optimises 

crop uniformity and reduces the spread of fruit maturity at harvest (Theron 2013, Erez 2000). 

A long drawn out flowering season has other indirect impacts on orchard activities including a longer 

period for controlling flowering pests such as dimpling bug, and for managing of bee hives. These 

impacts were not assessed in this study. 

Overlap of flowering between a cultivar and its pollinisers is essential for good fruit set (Ramirez and 

Davenport 2013). Changes in the timing of flowering between seasons or across years that result in 
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the loss of flowering synchronisation can therefore result in reduced yields. Flowering overlap does 

not appear be a problem for either Manjimup or Stanthorpe in the years of study (Figure 5), however, 

reduced marketable yields can result from the extended period of flowering overlap that is caused by 

irregular bud movement (Petri and Leite 2004). In this situation, fruit set occurs over an extended 

period of time, resulting in the significant spread of fruit maturity within individual trees.  

 

 

 

 

Figure 4. Duration of the flowering period from first flower to full bloom in cultivars of apple and pear 

grown in Manjimup and Stanthorpe in 2013 and 2014. Results are the average of individual tree 

observations. 
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Figure 5. Overlap of flowering periods, from first open flower to full bloom, in cultivars of apple and 

pear in Manjimup and Stanthorpe. Dates are given as the ‘day of year’, day 260 is 17 September and 

day 300 is 27 October. Data points are the average of individual tree observations for 2013 and 2014. 

 

 

 

Figure 6. Uneven flowering in ‘Cripps Pink’, Lyster’s Orchard Manjimup, 2014. 
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Apple and pear productivity in Manjimup and Stanthorpe  

Low winter chill and irregular flowering can reduce productivity through impacts on fruit set and 

variability of fruit quality at harvest (Petri and Leite 2004, Erez 2000). To investigate any association 

between irregular and protracted flowering in Manjimup in 2013 and 2014, with productivity in those 

years, broad assessments of yield were undertaken.  

Meaningful comparison of yield data between locations can be problematic, as yield is impacted by 

the interaction of many complex factors including pests and diseases, irrigation, planting systems, 

tree canopy management practices, as well as climatic factors. Long-term apple yield data was similar 

between locations with an average of 37.7 kg per tree in Manjimup and 38.2 kg in Stanthorpe (source: 

Australian Bureau of Statistics).  

There was no evidence of reduced productivity in Manjimup in the low chill year of 2014. In a survey 

of Manjimup growers, 69% reported an above average or excellent yield in 2014 and 79% reported 

average or really good fruit quality in 2014 (Figure 7). These results were based on grower 

perceptions, detailed yield data was not collected as part of this study. 
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Figure 7. Results from a survey of Manjimup growers on ‘Cripps Pink’ yields and quality in 2014. The 

survey was undertaken at a grower roadshow event using digital audience response technology 1 

October 2014.   

 

Orchard management practices in Manjimup and Stanthorpe 

The lack of evidence for losses in marketable yield as a result of the variable and protracted flowering 

observed in Manjimup in 2014 could be because, 1) the observed pattern of flowering had no impact 

on fruit set or fruit quality at harvest, 2) Manjimup growers have adjusted management practices to 

adapt to low chill years, or 3) impacts on productivity were there, but were not great enough to be 

picked up in grower yield records.   

While it was not possible to distinguish between these alternative explanations with the data collected 

in this study, it was worth considering whether Manjimup growers have implemented any changes to 

cultural practices and / or longer term strategies to manage variable and protracted flowering. In the 

survey of Manjimup growers, 50% indicated that they were using dormancy-breaking sprays on some 
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cultivars to manage the irregular flowering. This is compared with zero growers in Stanthorpe for that 

year.  

It is not clear whether the use of dormancy-breaking sprays in Manjimup is the reason that there was 

no clear impact of the variable and protracted flowering on productivity, but it is likely to have helped 

(Erez 1995, Saure 1985, Petri et al. 2014).  

A longer-term strategy for managing the effects of low chill years on flowering is to plant cultivars with 

lower chilling requirements. The existing variety mix was similar in Stanthorpe and Manjimup and 

there was no apparent difference in the cultivars under consideration for new plantings (personal 

communication).  

Conclusions 

The following conclusions on the impact of reduced winter chill on Stanthorpe’s apple industry in 2030 

can be drawn from the evaluation of flowering, productivity and orchard management practices in 

Manjimup. 

1. How will flowering of apple and pear trees be impacted by reduced winter chill in 

Stanthorpe in 2030?  

A more variable and protracted pattern of flowering is likely to exist across many apple cultivars in 

Stanthorpe in 2030.  

2. Will there be an impact on productivity? 

The more variable flowering will not necessarily have significant impacts on productivity of apple 

orchards in 2030. 

3. What can growers do to adapt?  

Stanthorpe growers are likely to be able to manage low chill years with the use of dormancy-breaking 

sprays. At this stage there is no clear need to shift to lower chill cultivars (or crops) as Manjimup 

growers are achieving high levels of productivity with the same variety mix as is currently grown in 

Stanthorpe. 

4. Is the climate analogue approach appropriate in this context and can it be applied more 

broadly? 

Yes, the climate analogue approach provided insight into potential impacts of reduced winter chill on 

flowering in Stanthorpe in 2030, and is likely to be a valuable tool for broadly evaluating climate 

change impacts and options for adaptation in many horticultural contexts.  

5. Are there factors that should be considered when using climate analogues for informing 

climate change adaptation in horticulture? 

Three important factors for consideration were identified during this case study.  

Selection of the climate analogue should be undertaken carefully, with consideration given to 

differences between the analogue and target locations with respect to environment, industry, 

social factors and so on. 

The Analogues Explorer tool comes with the following qualifying statement:  

“It is important to note that other potentially important aspects of local climate are not matched when 

using this approach, such as frost days or other local climate influences. Furthermore, for agricultural 

applications, solar radiation and soils are not considered. Thus we advise against the analogues 

being used directly in adaptation planning without considering more detailed information”.   
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A good example of why this is important was identified in this case study. The town of Young was one 

of the possible climate analogues listed for Stanthorpe in 2030, when the climates were matched on 

annual temperature and rainfall. In the current climate, Young receives significantly higher winter chill 

than Stanthorpe, but has a hotter summer. Hence, they might be a good match based on annual 

temperature, but Young would not have been a useful analogue for evaluating reduced winter chill in 

Stanthorpe. On the other hand, it might be a good analogue for assessing risk associated with 

extreme summer heat.   

An intrinsic assumption of the climate analogue approach is that the only significant difference 

between the test site and the analogue location is the climate, however, locations might differ in other 

ways that could significantly reduce the value of the climate analogue approach. For instance, if 

comparing crop production in Australia with that of somewhere else in the world, the production 

systems may be too different to provide meaningful impact and adaptation information.  

Relationships between climate and physiology are complex, the details and nuances of 

climate change impacts may not be fully defined by the climate analogue approach.   

This case study concluded that the differences in flowering behaviour observed in Manjimup 

compared with Stanthorpe were the result of low winter chill in Manjimup in 2013 and 2014. However, 

it is possible that the variable and protracted flowering in Manjimup was a response to the complex 

interaction between multiple factors other than total winter chill such as, the pattern of chill 

accumulation, heat, spring temperatures and day-length factors. This will only be understood through 

further experimentation, detailed climate data and modelling.  

The climate analogue approach is limited to investigation of one possible climate scenario at a 

time, while a modelling approach enables the testing of many different climate scenarios.  

Manjimup was used as a climate analogue for Stanthorpe in 2030. To investigate impacts of reduced 

winter chill in Stanthorpe in 2050 or 2090, alternative analogue locations would need to be sought as 

the conclusions from this case study cannot be extended beyond the intended time-frame.  

Key messages 

- Results from the climate analogue approach suggested that more variable and protracted 

flowering behaviour is likely in pome fruit trees in Stanthorpe by 2030 without significant 

impact on productivity. Adaptations will include the use of dormancy-breaking sprays to 

manage flowering, but there is no evidence for a need to switch to low chill cultivars at this 

stage. 

- The climate analogue approach can provide broad information around potential impacts and 

adaptation strategies for Australian temperate tree crops and horticulture more generally, 

however, the details need to be considered cautiously. 

Recommendations 

- Climate analogues should be used by the industry to broadly identify climate change impacts 

on apple and pear production systems and possible options for adaptation. Growers in 

Manjimup are already successfully managing the impacts of inadequate chill in some years, 

lessons can be learnt from their knowledge and experience.   

- This study did not capture the many potential impacts that protracted flowering can have on 

orchard management including a longer period for flowering pest control such as dimpling bug 

and for management of bee hives, difficulties in the timing of chemical thinner application, 

more labour intensive hand thinning and dealing with greater variability of fruit maturity at 
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harvest. A more detailed grower survey should be undertaken to better understand how 

growers in Manjimup are managing flowering in low chill years.  

- Potential impacts of low winter chill on marketable yield were not adequately addressed in this 

study and requires further research using a climate analogue and / or modelling approach. 

- A global study to investigate the limits of profitable apple production with regards to winter 

chill would provide valuable information for the Australian industry in climate change 

adaptation planning. Production areas with very low winter chill accumulation in South Africa 

and Southern Brazil rely heavily on dormancy-breakers and would be obvious target locations 

for this research.     

- The Australian Apple and Pear Industry’s ability to adapt to changing climate will depend not 

only on basic research, but on its ability to observe and capture data on tree physiology, 

climate and orchard practice, and interpret it in a meaningful way. Australia’s industry is made 

up of growing regions with diverse climates and much can be learnt about climate change 

impacts and options for adaptation by sharing of knowledge.   
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iii 
Dormancy-breaking sprays for low winter chill in apples 

Summary 

In the 2015-16 season, trials were undertaken in ‘Gala’ apple trees at three locations 

(Queensland, Western Australia and Tasmania) to assess the efficacy of using dormancy-

breaking sprays under current Australian climates and, the potential to use these sprays as 

an orchard management adaptation to inadequate winter chill under future Australian 

climates. The trials compared the effect of Waiken™, Dormex® and Erger® on the timing of 

green tip and flowering, the duration of the flowering period, fruit set, yield, harvest time and 

variability of maturity at harvest. All dormancy-breaking sprays were able to advance 

flowering time and compact the flowering period in ‘Gala’ apple, with differences observed 

between products and sites. Fruit maturity was advanced with dormancy-breakers (again 

with differences observed between products and sites) and generally reflected differences in 

flowering dates. There were no differences in fruit set, yield or variability of apple maturity in 

trees treated with dormancy-breaking sprays despite the compaction of flowering. Dormex® 

had the most significant impacts on ‘Gala’ flowering and harvest timing in WA and QLD, 

when compared with Waiken™ and Erger®. The timing of spray application relative to green 

tip and winter chill accumulation, impacted the bud burst and flowering response to 

dormancy-breaking products, and therefore flowering responses are likely to vary between 

seasons and cultivars. Dormancy-breaking sprays are likely to be an effective tool for 

managing flowering in ‘Gala’, and other apple cultivars, in lower chill years in Australia. 

Benefits from the use of dormancy-breakers would be greater in low chill years when the 

potential impacts of inadequate chill on flowering are greatest. Therefore, benefits are likely 

to increase under future warmer climate scenarios. Impacts of dormancy-breaking sprays on 

fruit quality and length of the harvest window remain unclear. 
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Introduction 

Dormancy is a phase of the annual cycle of apple trees that allows them to survive unfavourably cold 

winter conditions (Saure 1985). The minimum accumulation of winter chill needed to break bud 

dormancy is defined as the chilling requirement, and is thought to be genetically determined 

(Labuschagne et al. 2002, Samish 1954).  

Failure to adequately satisfy the chilling requirement can result in delayed and uneven bud burst and 

flowering, and extended duration of the flowering period (Saure 1985, Oukabli 2003). An extended 

flowering period reduces the effectiveness of chemical thinning (Petri and Leite 2004) and can impact 

on fruit set and yield (Erez 1995). It has also been shown to result in greater variability of fruit size and 

maturity, which impacts pest and disease management, and harvest efficiency (Petri and Leite 2004).  

Efforts are being made to breed lower chill cultivars in some crops to enable commercial production in 

milder growing regions, however management tools to compensate for insufficient chilling are still 

required in many temperate tree fruit production systems in warmer climates (Erez 1995). These tools 

utilise a range of strategies to manipulate bud progression through dormancy including the use of 

dormancy-breaking sprays to promote bud burst (Erez 1995, Allderman et al. 2011, Saure 1985). The 

use of dormancy-breaking sprays is perhaps the most widely used and accepted method for 

managing low chill conditions globally (Erez 2000, Jackson and Bepete 1995, Petri et al. 2014). 

Winter chill is predicted to decrease in Australian growing regions under future climate change, with 

milder districts likely to experience the impacts of inadequate chilling on a more regular basis 

(Darbyshire et al. 2013, White 2016). The use of dormancy-breaking sprays is a potential adaptation 

for the apple industry to manage existing commercial cultivars in warmer years, as they have been 

shown to stimulate earlier, more homogenous bud burst and flowering in a number of crops grown in 

conditions with insufficient winter chill (Erez et al. 2008, Petri et al. 2012, Saure 1985). Additional 

benefits such as improved uniformity of fruit maturity and quality with the use of dormancy-breaking 

sprays have been reported (Petri and Leite 2004).  

Different types of products have been shown to have dormancy-breaking action in a range of crops. 

These include thidiazuron (a compound with cytokinin-like activity) (Wang et al. 1986), dinitro-o-cresol 

(DNOC-oil) and potassium nitrate (Faust et al. 1997), garlic extract and gibberellic acid (Abd El-Razek 

et al. 2013), the emulsified vegetable oil compound Waiken™ (Bound and Miller 2006) and hydrogen 

cyanamide which is better known as Dormex® (Bound and Jones 2004). Dormex® has known risks for 

plant and human health, and therefore alternatives to the use of this product have been sought (Petri 

et al. 2014). More recently, Erger®, an inorganic nitrogen compound combined with calcium nitrate, 

has been shown to cause earlier and more compact flowering in apples (Petri et al. 2014, Petri et al. 

2010).   

However, with the exception of two studies (Bound and Jones 2004, Bound and Miller 2006), little 

work has been undertaken in Australia to investigate the efficacy of dormancy-breaking sprays to 

induce earlier and more uniform flowering in apple cultivars grown under local conditions, and the 

effects on fruit quality and yield remain unclear.  

A survey performed at the WA National Climate Change project Roadshow event in 2014 indicated 

that half of the growers were currently using Waiken™ and / or Dormex® for the purposes of 

stimulating uniform bud burst and flowering under conditions of inadequate chill, however there was 

considerable uncertainty around best practice issues and effectiveness. Questions and discussions 

with growers in other growing regions also indicated an interest in these products, but highlighted the 

need for better understanding regarding use and efficacy in low chill years under current climates, and 

potential as an adaptation strategy for climate change.   
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Project Objectives 

The overarching research question was: are dormancy-breaking sprays a feasible adaptation option 

for the Australian apple industry to low chill years in current and future climates? 

The specific research objectives were to determine: 

a. Impact of dormancy-breaking sprays on the timing of bud burst and flowering, and 

duration of the flowering period in ‘Gala’ apple grown in diverse Australian climates.  

b. Impact of dormancy-breaking sprays on fruit set, yield and variability of maturity and 

quality in Australian ‘Gala’ apple trees. 

c. Comparative effectiveness of using Waiken™, Dormex® and Erger® as dormancy-breaking 

sprays in apple. 

d. Cost-benefit of using dormancy-breaking sprays. 

e. Issues (actual and potential) associated with using dormancy-breaking sprays for 

management of, and adaptation to, inadequate winter chill under Australian conditions. 

f. Future research needs towards improving orchard practices around the use of dormancy-

breaking products. 

To investigate these objectives a study was undertaken in ‘Gala’ apple tree cultivars in the 2015 / 

2016 season at three orchard locations around Australia (QLD, WA and TAS). 

Materials and methods 

Site description 

The study was performed at three commercial orchard sites around Australia in the 2015 to 2016 

season (Table 1 and Figure 1). Sites were fully mature ‘Gala’ blocks and were representative of high-

density plantings in Australia. Trees were trained to a dominant central leader and, with the 

exception of the application of dormancy-breaking sprays as part of this study, were managed by the 

grower using standard orchard practices.   

Table 1. Description of the orchard study sites. 

State Growing 
region 

Latitude and 
longitude 

‘Gala’ strain/ 
Rootstock 

Density 
trees/ha 

Netted 

Queensland 
(QLD) 

Stanthorpe 28.52 S  
151.90 E  

Royal Gala/M.26  2500 Yes 

Western Australia 
(WA) 

Manjimup 34.16 S  
116.70 E 

Galaxy/M.26 2500 No 

Tasmania  
(TAS) 

Huonville 43.01 S 
147.06 E 

Alvina Gala/M.26 2500 No 
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Figure 1. Study sites in Huonville, TAS (a), Stanthorpe, QLD (b) and Manjimup, WA (c) in spring 

2015.   

 

Experimental design 

The experiment was a randomised complete block design with two treatments (Waiken™ and 

Dormex®) and an untreated control in WA and TAS, and three treatments (Waiken™, Dormex® and 

Erger®) and an untreated control in QLD. Replicates were individual trees, with five replicates per 

treatment. Guard trees were included either side of the datum trees to ensure complete coverage of 

datum trees and to protect other datum trees in the row from over-spraying. Sprays were applied at 

one concentration and timing, according to directions on the product label.   

Spray application 

Dormancy-breaking sprays were applied to the datum trees using a hand lance (Figure 2) as 

described in Table 2.  

  

a 

b 

c 
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Table 2. Details of the dormancy-breaking sprays applied to ‘Gala’ trees in WA, TAS and QLD 

in winter 2015.  

 Dormex® Waiken™  Erger® 

Active constituent 520g/L Cyanamide  388g/L Methyl esters of 
fatty acids 

250g/L Decanol 
alkoxylate (fertiliser 
adjuvant) 

Product rate 3L /100L water (3% v/v) 4L /100L water (4% v/v)  5L /100L water (5% v/v)  

Additives 
 

50ml/100L Agral or 
125ml/100L Kendeen 20 

NA 10kg/100L Calcium 
nitrate 

Application Applied as a fine spray over entire tree, to the point of run-off. 

Application 
timing 

35 days before expected 
green tip (label suggests 
30 – 45 days) 

35 before expected 
green tip (label 
suggests 35 – 50 days) 

35 days before 
expected green tip 
(label suggests 45 days) 

Determination of 
application date 

Grower records of historical green tip dates were accessed for the study site. 
Chill accumulation was monitored during the winter and compared with 
historical chill accumulation data to obtain the best estimate of expected 
green tip date.  

 

 

 

Figure 2. Application of dormancy-breaking sprays using a hand lance in Manjimup, WA. 
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Table 3. Actual timing of dormancy-breaking spray application on ‘Gala’ trees in QLD, WA and 

TAS 2015. 

Location Spray Date  Green tip 
date* 

Spray timing 
(days before 

green tip) 

Chill Portions at 
spraying 

(brackets, % total 
chill) 

Total chill 
Portions** 

TAS 13 Aug 8 Sep 26 95  (84%) 113 

QLD 30 July 5 Sep 37 60  (75%) 80 

WA 18 Aug 23 Sep 36 58  (75%) 77 

*In untreated trees. **accumulated from 1 Jan to green tip. 

 

 

 

 

 

 

Figure 3. Chill Portion accumulation and dormancy-breaking spray application timing at study 

sites in TAS, QLD and WA, 2015. 

 

Temperature data and calculation winter chill  

Hourly temperature data was recorded in the orchard using temperature data loggers placed inside a 

miniature Stevenson’s screen positioned approximately 1.5 to 2m within the tree row. Winter chill was 

calculated in Chill Portions using the Dynamic model (Erez et al. 1990, Fishman et al. 1987).  

Green tip and flowering  

Buds were monitored three times per week (full methods described in appendix 1), from just prior to 

green tip until the end of flowering. Only spur and terminal buds were assessed, with axillary buds 



 

11 
Dormancy-breaking sprays for low winter chill in apples 

and long, highly vigorous shoots excluded. Dates were recorded for the day on which each tree 

reached green tip, 5% flowering and full bloom.  

Green tip was defined as the date when 5% of the buds of the tree had observable green tips, 

corresponding to the 07 stage in the international BBCH code for pome fruit (beginning of bud break: 

first green leaf tips just visible) (Meier et al. 1994). Full bloom was defined as the date when 80% of 

the flowers were open, similar to stage 65 in the international BBCH code for pome fruit (full flowering: 

at least 50% of flowers open, first petals falling) (Meier et al. 1994).  

Fruit set  

Fruit set measurements were taken from three representative mid-canopy branches per tree. The 

number of spur and terminal flower clusters were recorded for each limb soon after green tip when 

flowers were emerging. The number of fruit set per cluster was recorded for each tagged limb after 

final fruit drop, but before hand-thinning. 

Fruit sampling and maturity assessments  

A 30 fruit sample was taken per datum tree prior, but as close as possible to, the grower’s first 

harvest. For the purpose of standardisation between treatments, fruit was sampled from the mid-

section of each tree on the same side of the row. To ensure the full range of variability was captured, 

fruit were picked from along the entire length of a branch before moving on to the next branch. This 

ensured that fruit was not biased towards selection from the outside or inside of the canopy.   

The following assessments were made on the 30 fruit sample: 

- Starch Pattern Index (SPI) was determined using the starch-iodine test for apples. Each fruit was 

cut transversely across the equator and the cut surface of one side sprayed with a solution of 1g 

potassium iodide plus 0.25g iodine per 100ml water (0.1% iodine, 1% potassium iodide. The 

resulting pattern of starch hydrolysis was compared with the ENZA 0-6 scale.   

- Background colour (BGC) was estimated using an ENZA ‘Royal Gala’ swatch.  

- Red blush intensity (RBI) was assessed by comparing the blush/red side of the fruit with the 

‘Royal Gala’ ENZA 11 point colour chart.  

- Red blush coverage (RBC) was assessed by estimating the % of the fruit surface covered by 

greater than or equal to an RBI of 2 (on the ENZA 11 point chart). 

Variability in fruit quality at harvest 

Variability of fruit maturity and quality at harvest was assessed by calculating the standard deviation 

of the fruit weight, SPI, BGC, RBI, RBC measurements taken from the 30 fruit sample.  

Yield 

Yield was calculated per tree by multiplying the total fruit number (counted and recorded prior to 

harvest) by the average fruit weight (taken from the 30 fruit sample). Trunk cross-sectional area (TCA) 

was calculated from a trunk circumference measurement taken 20 cm above the graft. 

Phytotoxicity 

As both Dormex® (Bound and Jones 2004) and Erger® (Hawerroth et al. 2010) can cause 

phytotoxicity, phtotoxicity was assessed and recorded from the date of spray application to flowering 

using a 0-4 scale (appendix 2).. 

 

  



 

12 
Dormancy-breaking sprays for low winter chill in apples 

Results and discussion 

Timing of spray application  

The target spray timing was 35 days before green tip. Historical green tip records, together with in-

season chill accumulation calculations, were used to predict the estimated date of green tip for 2015. 

A best estimate of green tip date was determined by comparing the current season’s chill 

accumulation curve with that of the previous few seasons to determine how the season was tracking. 

The actual spray date was further dictated by the weather, with favourable conditions for spraying 

required. Actual spray timing was 26, 37 and 36 days before green tip in TAS, QLD and WA 

respectively (Table 3). 

The timing of dormancy-breaking spray application can have considerable impact on product efficacy 

(Faust et al. 1997, Petri et al. 2010). Spraying too early reduces effectiveness and spraying too close 

to bud burst can have undesirable effects such as delayed green tip and bud damage (Bound and 

Jones 2004, Bound and Miller 2006). Getting the timing right can be problematic however, due to 

difficulties in estimating the date of green tip. Dormancy-breaking sprays are commonly applied 

according to calendar date in other crops such as grapes (pers. comm.), but this is not recommended 

in apples as the date of green tip can vary considerably from season to season. The methods 

described in this study estimated green tip dates successfully in WA and QLD. Green tip timing was 

more difficult to predict in TAS, primarily due to the exceptionally cold winter conditions.    

No bud or flower phytotoxicity was observed in this study with any of the dormancy-breaking spray 

treatments.  

Green tip and flowering 

Green tip and flowering responses to dormancy-breaking sprays varied between sites (Figure 4 and 

Table 4).  

In TAS, green tip was delayed by five and six days in Dormex® and Waiken™ sprayed trees 

respectively (Figure 4 and Table 4). Extended dormancy is not an uncommon response and occurs 

when dormancy-breaking sprays are sprayed close to bud burst (Bound and Miller 2006). These trees 

caught up with the untreated control trees and there were no significant differences in the date of full 

bloom or the duration of the flowering period. A reduction in the length of flowering was observed in 

trees sprayed with both of the dormancy-breaking products, but this was not statistically significant.  

The lack of flowering response to the dormancy-breaking sprays was likely due to the cold 2015 

winter in which Huonville received 113 chill portions, well above the long-term average of 88. Under 

these conditions it was likely that the ‘Gala’ chilling requirement was satisfied prior to application of 

the dormancy-breaking sprays, limiting the potential impact. Buds were possibly already sitting in the 

eco-dormant phase of dormancy waiting for favourable growing conditions. The rapid onset of a warm 

spring resulted in a short flowering period of just two to three days in all trees.    

In QLD, green tip was significantly advanced in trees sprayed with Dormex®, Erger® and Waiken™ , by 

nine, six and five days respectively, when compared with untreated trees (Figure 4 and Table 4). Full 

bloom was advanced by 12, 5, and 5 days with Dormex®, Erger® and Waiken™ respectively (Figure 5), 

and the flowering period was condensed with all dormancy-breaking sprays. Green tip and flowering 

responses to the Dormex® spray were significantly stronger than responses to Waiken™ and Erger®, 

with no differences observed between the latter two products.                   

In WA, green tip was significantly advanced by 14 days in trees sprayed with Dormex® and four days 

in trees sprayed with Waiken™  (Figure 4 and Table 4). Full bloom was advanced by nine days in 

Dormex® sprayed trees while there was no difference in full bloom dates between trees sprayed with 

Waiken™ and the untreated trees. The length of the flowering period was reduced by 19% with 
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Dormex®, while Waiken™ caused a significant increase in the flowering period by 39%. In studies of 

both time and rate of application across five cultivars, Bound and Miller (2006) reported that Waiken 

concentrated the flowering period regardless of whether the flowering period was brought forward or 

delayed. The cause of the lengthening of flowering in this study in the Waiken™ treated trees is 

unclear and requires further studies to determine if this is a real response to Waiken™ or the result of 

other experimental factors.       

The differences observed in green tip and flowering responses to dormancy-breaking sprays at each 

site in the 2015-2016 season indicate that responses are likely to vary from season to season, 

depending on factors including temperatures before and after spraying, and timing of spraying relative 

to green tip. Petri et al. (2010) described the impact of temperature at spraying, and in the days 

immediately following spraying, on the response to dormancy-breaking sprays. 

In QLD and WA, dormancy-breaking sprays caused large changes to full bloom timing and duration 

indicating that careful consideration needs to be given to the flowering time of polliniser varieties to 

ensure fruit set is not impacted. With historical knowledge of cultivar flowering times, dormancy-

breaking sprays can be used to improved synchronisation of flowering between cultivars and their 

pollinisers (Petri et al. 2012). 

 

Figure 4. Green tip, first flower and full bloom in Gala apples treated with and without 

dormancy-breaking sprays in TAS, QLD and WA. 
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Table 4. Effect of dormancy-breaking sprays on green tip and flowering dates and duration, for 

‘Gala’ apple strains grown in TAS, QLD and WA in the 2015 - 2016 season. 

Site ‘Gala’ 
strain 

Treatment Green 
tip 
(DoY) 

First 
flower 
(DoY) 

Full bloom 

(DoY) 
Green tip 
to first 
flower 
(days) 

First flower to 
full bloom 
(days) 

Tas Alvina  Untreated 251 b 275 b 278 24 a   3 

  Dormex® 256 a 277 a 279 20 b   2 

  Waiken™  257 a 277 a 279 20 b   2 

QLD Royal Untreated 248 a 266 a 278 17 c 12 a 

  Dormex® 239 c 259 c 266 20 b   7 c 

  Erger® 242 b 264 b 273 22 a   9 b 

  Waiken™  243 b 264 b 273 21 ab   9 b 

WA Galaxy Untreated 266 a 281 a 287 15 b   6 b 

  Dormex® 252 c 273 c 278 21 a   5 c 

  Waiken™  262 b 278 b 287 17 b   9 a 

DoY = Day of year. Within a single and site only, means with different letters are significantly different, P = 0.05, 

LSD test. Full bloom dates did not vary between trees within each treatment and therefore no statistics could be 
performed. 
 

 

 

 

 

Figure 5. Differences in stages of flowering on 18 September 2015 in QLD ‘Gala’ trees treated 

with and without dormancy-breakers. 
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Fruit set and yield  

Fruit set, expressed as the percentage of flower clusters that set fruit, was not significantly different 

between treatments at any location (Figure 6), indicating that compaction of the flowering period, 

observed most strongly in QLD, did not negatively (or positively) impact the effectiveness of 

pollination. Similarly, when expressed as the number of fruit set per 100 flower clusters, there was no 

difference between treatments (data not shown). Dormancy-breaking sprays have been shown to 

have a slightly negative effect on fruit set in some studies (Hawerroth et al. 2010, Bound and Jones 

2004) suggesting that impacts on pollination success are likely to be influenced by factors such as 

cultivar and season.   

Interestingly, the number of fruit set per 100 flower clusters was significantly different between 

locations, with TAS showing the highest fruit set, followed by WA, and then QLD (data not shown).   

 

 

Figure 6. Fruit set in ‘Gala’ apple trees treated with dormancy-breaking sprays at study sites in 

TAS, QLD and WA, 2015.  

 

There were no differences in gross apple yields between treatments at any location (Table 5). In TAS, 

fruit from Waiken™  treated trees had the highest and most marketable mean fruit weight compared 

with the other treatments, however this was likely a crop load effect and not a result of the treatment 

per se (Table 5). Yield adjusted for trunk cross sectional area was significantly higher in the control 

trees compared with both Waiken™ and Dormex® treated trees in TAS. It is unclear whether these 

differences were a result of the treatment, as flowering density varied widely between trees in the 

block, and therefore it is possible that any differences in yield were a reflection of flowering density 

rather than an impact of the treatments.  

In QLD, fruit numbers were significantly higher in the Dormex® treated trees, compared with those 

sprayed with Erger® and Waiken™ (Table 5). Again, it is unclear whether this is the result of the 

treatments as there were no significant differences in the percentage of flowers setting fruit (Figure 6). 

In WA, there were no differences in the components of yield between treatments (Table 5). 

Dormex® has been shown to significantly improve yields in other studies of apple, including in ‘Granny 

Smith’ and ‘Golden Delicious’ (Jackson and Bepete 1995). Such improvements are likely to be more 

substantial in very warm growing regions, such as the one used in the Jackson and Bepete (1995) 
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study, which had less than 300 chill hours, where yields are generally very low to start with. In most 

Australian growing regions, significant improvements are more likely to be related to fruit quality and 

marketable yield, rather than gross yield.  

 

Table 5. Effect of dormancy-breaking sprays on gross yield and its components at harvest, for 

‘Gala’ apple strains grown in TAS, QLD and WA in the 2015-2016 season. 

Site ‘Gala’ 
strain 

Treatment TCA1 
(cm2) 

Fruit no. 
/ tree 

Fruit no. 
/ TCA 

Mean 
fruit 
weight (g) 

Kg/tree Kg/TCA T/ha 

Tas Alvina  Untreated 14.1 233 16.6 a 133.2 b 30.8 2.2 a 77 

  Dormex® 16.2 201 12.1 b 124.8 c 24.1 1.5 b 60 

  Waiken™  15.8 118   7.7 c 157.3 a 18.7 1.2 b 47 

QLD Royal Untreated 18.5 196 ab 10.8 a 128.8 25.2 1.4 63 

  Dormex® 21.7 241 a 11.1 a 128.5 30.8 1.4 77 

  Erger® 21.2 167 b   8.1 b 139.5 23.3 1.1 58 

  Waiken™  20.6 187 b   9.3 ab 130.3 24.2 1.2 60 

WA Galaxy Untreated 17.3 162 10.5 107.0 16.6 1.1 41 

  Dormex® 18.0 161 10.2 114.1 18.4 1.1 46 

  Waiken™  19.6 212 10.8 104.4 21.9 1.1 55 

1TCA = trunk cross-sectional area. Within a single and site only, means with different letters are significantly 
different, P = 0.05, LSD test. 

 

Fruit maturity and quality 

Results of the effect of dormancy-breaking sprays on fruit maturity and quality are shown in Table 6. 

In TAS, fruit from trees treated with Waiken™ were the most advanced according to the delta 

absorbance (DA) meter and background colour, however the starch pattern index results indicate that 

fruit from untreated trees were the most mature at harvest. Therefore, differences in the timing of 

maturity with treatments are not clear, but the impacts were not large. 

In QLD, fruit was harvested on different dates due to the large differences in maturity between 

treatments. Fruit from Dormex® trees were more than one week ahead of untreated trees (Table 6). 

Fruit from Erger® and Waiken™ trees were also ahead by at least two days, however comparison of 

the background colour and red blush coverage data suggested that fruit on these trees were further 

advanced (Figure 7). Advances in fruit maturity reflected the differences in flowering dates. 

In WA, fruit maturity was slightly advanced in Dormex® trees compared with control but this was not 

statistically significant (Table 6).  The background colour was significantly higher in fruit from Waiken™ 

treated trees compared with Dormex® and control trees. According to the data there were no 

differences in red blush coverage between treatments, although grower observation suggested that 
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the colour was more intense in the trees sprayed with Dormex® compared with other treatments. This 

may have been due to advanced maturity. 

 

Table 6. Effect of dormancy-breaking sprays on fruit maturity and quality at harvest, for ‘Gala’ 

apple strains grown in TAS, QLD and WA in the 2015-2016 season. 

Site ‘Gala’ 
strain 

Treatment Fruit 
sample 
date 

Starch 
pattern 
index  

Background 
colour 

Red blush 
coverage2 

(%) 

Red blush 
intensity2 

DA 
index1 

Tas Alvina  Untreated 7/3/16 0.8 a 6.4 b   0.45 b 

  Dormex® 7/3/16 0.3 b 6.2 c   0.51 a 

  Waiken™  7/3/16 0.3 b 6.5 a   0.35 c 

QLD Royal Untreated 3/2/16  2.4 3.4 c 15.6 b 1.8  

  Dormex® 27/1/16 3.2 4.1 b 35.6 a 2.9  

  Erger® 1/2/16 3.5 4.5 a 36.0 a 3.1  

  Waiken™  1/2/16 3.5 4.3 ab 33.9 a 3.0  

WA Galaxy Untreated 9/2/16 2.1 3.4 b 70.9 5.2  

  Dormex® 9/2/16 3.1 3.4 b 68.2 4.6  

  Waiken™  9/2/16 2.5 4.1 a 72.6 5.0  

1DA index was measured with the Delta Absorbance meter in Tasmania only. 2Red blush coverage and intensity 
were not measured in Tasmania. Numbers are the average of 30 fruit samples. Within a single and site only, 
means with different letters are significantly different, P = 0.05, LSD test. 
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Figure 7. Fruit at harvest on 27 January 2016 in ‘Gala’ trees treated with Dormex® and Erger®, 

QLD (centre tree was sprayed, surrounding trees are untreated).  

 

There was no measurable reduction in the variability of fruit maturity (as assessed by looking at 

colour, starch pattern index and fruit weight) at harvest with any of the sprays (data not shown), 

despite the significant effect of the treatments on compaction of flowering at some sites. Similar 

results were observed by Bound and Jones (2004) who found no consistent trends in impacts on fruit 

quality with the use of Dormex® even though significant compaction of the flowering period was 

observed. 

Based on the finding that an extended flowering period increases the variability of fruit size at harvest 

(Petri and Leite 2004), it was hypothesised in this study that a reduction in the spread of flowering 

would result in a reduction in the spread of maturity, potentially reducing the number of picks and 

increasing the percentage of fruit picked at optimum maturity.  

Failure to observe an improvement in variability could be the result of a number of factors. Firstly, the 

small experimental scale. Up-scaling the experiment to rows or blocks of trees would provide more 

scope for identifying differences in fruit variability and potential for improving harvest management. 

Secondly, other influences impacting on fruit quality may have overshadowed any effects of the more 

uniform flowering. Factors such as position in the canopy, shading, leaf area associated with 

individual fruit development and age of wood bearing the fruit, have all been shown to impact on 

mineral content and quality (Volz et al. 1994).  

Cost-benefit analysis 

A full cost-benefit analysis was not undertaken here as the size of the study did not enable sufficient 

collection of data for meaningful analysis of dollar value, however the broad costs and benefits are 

outlined in Error! Reference source not found. 

  

Dormex®

® 

Erger® (centre tree only) 
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Table 7. Outline of cost and benefits associated with the use of dormancy-breaking sprays to 

manage low winter chill years in apple.  

Costs 
 

Direct costs  

Product purchase. 

Labour to apply product. 

Tractor and associated costs to perform one spray during the dormant period. 

Potential indirect costs  

Inappropriate application timing could result in anything from nil benefit to significant 
bud damage, resulting in negative impacts on pollination and fruit set. 

Human health impacts from inappropriate handling and use of some dormancy-breaking 
products.   

Benefits 
 

More compact and uniform flowering resulting in improved efficiency of chemical 
thinning and management of flowering pests. 

More compact flowering potentially resulting in more uniform fruit maturity throughout 
the canopy and therefore shorter harvest duration (saving on labour costs) and 
improvements in fruit quality. Also likely to be benefits for the effectiveness of pest and 
disease management and efficacy of plant growth regulators, such as ReTain®, to 
manage harvest. 

Benefits would be greater in low chill years when the potential impacts of inadequate 
chill on flowering are greatest. Benefits are likely to increase under future warmer 
climate scenarios. 

Earlier flowering and harvest time: market-price benefits in some cases. 

Benefits are likely to vary with cultivar, and block (for example tree structure may effect 
impact of dormancy-breaking sprays on fruit quality). 
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Conclusions 

The dormancy-breaking sprays assessed in this study were able to advance flowering time and 

compact the flowering period in ‘Gala’ apple, with differences observed between products and sites. A 

more compact and uniform flowering period has a number of benefits including improved 

management of bee hives, flowering pests and chemical thinning practices.  

Despite the compaction of flowering, there were no clear differences observed in fruit set, yield or 

variability of apple maturity in trees treated with dormancy-breaking sprays. More work is required to 

test the potential of these products to improve fruit quality and reduce the length of harvest. Advances 

in harvest timing were observed with the dormancy-breakers and generally reflected differences in 

flowering dates. The ability to manipulate harvest timing can be useful in situations where advantage 

can be taken of a high-price market window.  

Dormex® had the most significant impacts on ‘Gala’ flowering and harvest timing in WA and QLD, 

when compared with Waiken™ and Erger®. However, Dormex® is considerably more toxic to humans 

than either Waiken™  or Erger®, and has greater capacity to cause phytotoxicity (Bound and Miller 

2006). It has been noted in other studies that a significant advantage of using non-toxic dormancy-

breaking products such as Waiken™, is greater flexibility with the timing of application. The product 

can be applied later in the season (up to when some buds are showing green) without causing 

damage to buds (Bound and Miller 2006).   

Application timing of dormancy-breaking sprays relative to green tip, previous winter chill 

accumulation and temperatures received after spraying, had considerable impact on product efficacy 

in this study. As a consequence, flowering responses are likely to vary between seasons and it is 

important to consider the flowering time of polliniser cultivars to ensure flowering overlap so that fruit 

set is not affected. 

The overarching research question posed at the outset of this study was: are dormancy-breaking 

sprays a feasible adaptation option for the Australian apple industry to low chill years in current and 

future climates? Results have indicated that dormancy-breaking sprays are likely to be an effective 

tool for managing flowering in ‘Gala’ in lower chill years in Australian growing conditions. It seems 

reasonable to broaden this conclusion to other apple cultivars, when considered in the context of 

results from previously published research in ‘Fuji’, ‘Granny Smith’, ‘Cripps Pink’ and ‘Cripps Red’ 

(Bound and Jones 2004, Bound and Miller 2006, Petri et al. 2014, Erez 2000), However significant 

research gaps still remain.  

How effective will dormancy-breaking sprays be as an adaptation for the Australian apple industry to 

the climate change in the longer term? Or to phrase the question another way, when will the winter 

chill received in an orchard fall too far below the chilling requirement for even the use of dormancy-

breaking sprays to enable economic production? Only a proportion of the chilling requirement can be 

compensated for by the use of dormancy-breaking sprays (Faust et al. 1997), but the size of this 

proportion is unclear. It has been suggested that up to 30% of the chilling requirement can be 

compensated for with dormancy-breaking sprays (Erez 1995), however compensation closer to 45% 

has been demonstrated in stone fruit (George et al. 2002).  

A global study to investigate the limits of profitable apple production with regards to winter chill would 

provide valuable information for the Australian industry in climate change adaptation planning. 

Production areas with very low winter chill accumulation in South Africa and Southern Brazil rely 

heavily on dormancy-breakers and would be obvious target locations for this research.     

A more accurate method for determining dormancy-breaking spray timing is required to improve the 

consistency and predictability of the flowering response. Difficulties in estimating the green tip date 

has potential to reduce the product efficacy and cause bud damage in the worst cases. Faust et al. 
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(1997) suggested that dormancy-breakers are only effective when sprayed during the ‘s-

endodormancy’ phase of dormancy, and not before (Figure 8). A biological marker is required to 

determine when buds are at this stage and therefore responsive to dormancy-breaking sprays. 

Biochemical changes in water status, cell membrane composition, hormone production and anabolic 

potential have been identified in buds as they progress through the stages of dormancy (Faust et al. 

1997) and could potentially be used as markers of dormancy status. Incidentally, the use of 

tetrazolium staining (Carvalho et al. 2010) as a simple tool to monitor the status of bud dormancy in 

apples was assessed as part of this study, but could not reliably track the shift from dormancy to bud 

burst (data not shown).     

The mechanism by which dormancy-breaking sprays act to promote bud burst, particularly in the case 

of Dormex®, remains unclear. Vergara et al. (2012) suggested that a respiratory stress may be 

involved in the release of buds from dormancy, and Melke (2015) concluded that oxygen starvation 

was involved in the dormancy breaking mechanism when applying oils. Understanding the mode of 

action would enable the development of products with greater efficacy and safety.  

The Australian pistachio industry has recommended winter oil application in low chill years to advance 

bud burst. The recommendation states that winter oil be applied if 57 Chill Portions have not been 

reached by 15 August (Zhang and Taylor 2011). Defined guidelines for apple varieties on the use of 

dormancy-breaking sprays are likely to be some way off due to a lack of understanding around 

cultivar chilling requirements. Investigations should be undertaken, however, into the possibility of 

determining broad guidelines based on current knowledge.       

 

 

Figure 8. A schematic representation of the progression of buds through dormancy, showing 

the point at which buds become responsive to the action of dormancy-breaking sprays (Faust 

et al. 1997).  
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Key messages 

- Dormancy-breaking sprays are likely to be an effective tool for managing flowering in ‘Gala’, 

and other apple cultivars, in lower chill years in Australia.  

- Impacts of dormancy-breaking sprays on fruit quality and length of the harvest window remain 

unclear. 

- Benefits from the use of dormancy-breakers are likely to be greater in low chill years when the 

potential impacts of inadequate chill on flowering are greatest. Therefore, benefits are likely to 

increase under future warmer climate scenarios.  

- Dormex®, Waiken™ and Erger® were able to advance flowering time and compact the 

flowering period in ‘Gala’ apple, with differences observed between products and sites. 

Compact and uniform flowering period has benefits for improved management of bee hives, 

flowering pests and chemical thinning practices.  

- Fruit maturity was advanced with dormancy-breakers, with differences observed between 

products and sites, and generally reflected differences in flowering dates. The ability to 

manipulate harvest timing can be useful in situations where advantage can be taken of a 

high-price market window.  

- There were no differences in fruit set, yield or variability of apple maturity in trees treated with 

dormancy-breaking sprays despite the compaction of flowering. 

- Dormex® had the most significant impacts on ‘Gala’ flowering and harvest timing in WA and 

QLD, when compared with Waiken™ and Erger®.   

- The timing of spray application relative to green tip, previous winter chill accumulation and 

temperatures received after spraying, impacts the bud burst and flowering response to 

dormancy-breaking products.  

- Flowering responses are likely to vary between seasons, cultivars and blocks.  

- Flowering time of polliniser cultivars needs to be considered to ensure flowering overlaps so 

that fruit set is not affected. 

 

Recommendations 

- The timing of dormancy-breaking spray application should be carefully considered as 

inappropriate timing could result in anything from nil benefit to significant bud damage, 

resulting in negative impacts on pollination and fruit set. 

- Application timing should be determined using historical green tip and winter chill records, 

together with monitoring of in-season chill accumulation. Historical and up-to-date in-season 

winter chill information will be available from the Australian winter chill website (to be released 

in March 2017).   

- Investigations should be undertaken into the possibility of determining broad guidelines 

around for the use of dormancy-breaking sprays to manage low chill years in cultivars of 

apple, based on existing knowledge. Such guidelines should include information on when 

dormancy-breaking sprays should be used, and in which cultivars and regions.       

- Potential benefits of dormancy-breaking sprays on variability of fruit maturity and the length of 

the harvest window remain unclear. Further research is required to investigate how these 

products might be used to improve fruit quality and harvest efficiency, particularly in cultivars 

requiring multiple picks.  
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- Investigations into alternatives to Dormex® are required. Current research suggests that this 

product remains the most efficacious dormancy-breaker available in Australia, but its 

mammalian health impacts may result in de-registration in the future. Research is required to 

determine the mode of action of Dormex® to enable development of dormancy-breaking 

products with greater efficacy and safety.  

- In considering potential for adaptation to warmer winters, Australian apple growers need to 

know when the winter chill received in their orchard will fall too far below the chilling 

requirement for dormancy-breaking sprays to enable economic production of each cultivar. 

Further research at both the basic and applied levels would be required to provide these 

guidelines.  

- A global study to investigate the limits of profitable apple production with regards to winter 

chill would provide valuable information for the Australian industry in climate change 

adaptation planning. Production areas with very low winter chill accumulation in South Africa 

and Southern Brazil rely heavily on dormancy-breakers and would be obvious target locations 

for this research.     

- Basic research is necessary to identify a biological marker of bud progression through 

dormancy to facilitate optimal timing for dormancy-breaking spray application. 

- Further research to develop phenology models of bud burst timing for apple cultivars is 

required to enable more accurate estimations of green tip date.    
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Appendix 1 

PHENOLOGY DATA COLLECTION PROTOCOLS  

1.1 Phenology Data 

Phenology assessments will be performed to determine 5% green tip (apple) and full bloom 

(80% open flowers) dates for apple varieties. Regular visual assessments (Monday, 

Wednesday and Friday) will be made from just prior to budburst until flowering is 

completed. Assessments will be performed on a whole tree basis with only spur and terminal 

buds and spur and terminal flower clusters assessed (axillary buds on one-year-old pome fruit 

shoots are not included in the assessments).  

 

1.2 Apple Phenology Collection Methods 

Select five trees to monitor for each variety and rootstock (where applicable) under 

investigation. 

Green tip: 

 Prior to green tip, count the number of buds (spur and terminal) on one of the 

five selected trees and record. 

 Compare the remaining four trees and estimate up or down the number of buds 

on each tree. If there is an obvious variation to the counted tree, perform a full 

count. 

 Estimate green tip percentages by counting all buds at the green tip stage. The 

initial bud count will inform this. For instance if the tree has 500 buds, 25 buds 

at green tip will indicate the tree is at 5%. 

 After the tree has reached 5% green tip, make one more visit to ensure the 

observation was correct. 

Flowering: 

 Once flowering commences, initially record the number of open flowers up to 

50. This will be easier than calculating small percentages. 

 Count the number of flower clusters on one tree. Similarly to the bud count, 

estimate the number of clusters on the remaining four trees and make 

adjustments up or down for differences between the trees. 

 To estimate flowering percentage, count the number of full clusters open by 

estimating across clusters. For instance, if two clusters have halve the flowers 

open that equates to one full cluster. Estimate percentage open based on total 

cluster number previously recorded. 

 For very large trees (flower clusters greater than 1000), additional estimates 

may need to be made to account for the size of the tree. Follow the above 
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protocol for three representative branches (similar cluster distribution up the 

branch as the tree) on each tree rather than the whole tree. 

 If the tree is less than 50% bloom, counting the number of open clusters will be 

easiest. If more than 50% of flowers are open, counting the number yet to bloom 

will be easier. 

 As a general rule, round estimates to the nearest 5%. 

 

1.3 Recording Phenology Data 

An Excel based data collection pro forma has been developed to ensure data is recorded 

consistently between sites. Attachment A is an example of the data recording sheet.  
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Bud damage scale 

 

Scale    

0 No damage   

  

  

1 Mild burning   

 

 

Mild burning of bud scales, but 

buds normally recover 

 

2 Moderate damage   

  

Buds likely to develop, but some 

flowers too burnt to open; some 

flowers undamaged 

 

3 Severe burning    

  

Buds do not develop,  

usually results in bud death 
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RESEARCH ARTICLE

Sun damage risk of Royal Gala apple in fruit-growing districts in Australia

R Darbyshirea*, L McClymontb and I Goodwina,b

aFaculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, Australia; bDepartment of
Economic Development, Jobs,Training and Resources, Tatura, Australia

(Received 17 November 2014; accepted 18 March 2015)

This study estimated minimum air temperatures for potential sun damage for sunburn browning (non-
netted and netted) and sunburn necrosis (non-netted) for Royal Gala apple in Australia. The approach
estimated when conditions may be conducive to the development of sun damage in some fruit. The
approach provides a measure of potential damage. This allows for more flexible analyses of potential
sun damage which current models are unable to produce due to data limitations. The air temperature
thresholds determined were 34.1 and 38.7 °C, respectively, for browning and necrosis for non-netted
fruit and 37.9 °C for browning under netting. These air temperature thresholds were applied across
southern Australia from 1911–2013 demonstrating different risk profiles between sites, inter-annual
variability and the benefit of installing netting via a reduction in potential damage days. The results
can be further extended to estimate impacts from climate change and assess the benefit of installing
netting to adapt to increasingly extreme hot weather.

Keywords: browning; necrosis; shade net; sunburn; sunscald

Introduction

Sun damage in apple occurs as the result of
exposure to high radiation loads (Schrader et al.
2003a,b) and can reduce market yield by down-
grading quality and increasing cullage. Regions
with summers characterised by clear skies and high
temperatures, such as southern Australia, have
high sun damage risk. A heat wave event in
January 2009 in the Goulburn Valley in southeast
Australia provides an example with large yield
losses incurred due to sun damage, approximated
at 30%–70% (Thomson et al. 2014).

Sun damage can manifest in many forms.
Sunburn necrosis (henceforth referred to as nec-
rosis) appears as a dark penetrative burn and is a
thermal response with a fruit surface temperature
(FST) of 52 ± 1 °C for 10 min sufficient to induce
necrosis of several apple varieties including Gala
(Schrader et al. 2001). Sunburn browning (hence-
forth referred to as browning) is characterised by a

yellow, brown, bronze or dark tan spot on the sun-
exposed side of the fruit (Schrader et al. 2003a;
Racsko & Schrader 2012) and results from a com‐
bination of high FST and light exposure. For
attached Gala apples fully exposed to sunlight on a
clear day, Schrader et al. (2001) reported a threshold
FST of 47.8 °C for browning damage when FST
was maintained at constant temperature for 60 min.

In the context of future climate change and
associated rising summertime temperatures, in‐
creased risk of sunburn damage is highly likely.
Predictions regarding changes to sun damage risk
and evaluation of adaptation options are therefore
important for future planning. This is particularly
pertinent for Australia. Currently, in many of
Australia’s pome fruit-growing regions, extreme
heat events are common with incidences of extreme
heat days increasing historically (Alexander et al.
2007). Further, it is expected that such events will
continue to increase in both frequency and severity
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due to anthropogenically induced climate change
(Alexander & Arblaster 2009). Given the backdrop
of increasingly extreme climate conditions, this
research aimed to develop potential sun damage
incidences for Royal Gala apple using air temper-
ature information for netted and non-netted fruit.

Few studies have scaled up analyses of sun
damage beyond the experimental unit due to
complexities in determining precise climate and
growing conditions that lead to sunburn damage on
individual fruit. Schrader et al. (2003b) considered
the influence of several factors on FST including
air temperature, radiation, wind speed and relative
humidity. Of these, air temperature was found to be
most highly correlated to FST. In a predictive
model developed later, Schrader (2014) added
cultivar, fruit diameter and canopy density as
additional factors that influence the FST of apple.

Developing a method to use air temperature as a
proxy for potential sun damage provides a flexible
platform for broader analyses both temporally and
spatially. Daily maximum temperatures are com-
monly recorded by meteorological organisations
and are available for long historical periods and
with large spatial coverage. Other climate vari-
ables, such as relative humidity, are much less
available. Furthermore, climate projection informa-
tion for temperature is more reliable and readily
available than for other climate variables (CSIRO
2007). Restrictions in the application of an existing
FST model (Schrader 2014) due to data availability
are already apparent (Racsko & Schrader 2012),
supporting the need for a simplified but considered
approach.

The objective of this study was to identify
air temperature thresholds that have the potential
to lead to sunburn damage. To determine these
thresholds, two aspects must be known. First, the
FST threshold that induces damage: for this study,
Royal Gala apple was used and threshold values
of 52 °C for necrosis and 47.8 °C for browning
were utilised following previous findings (Schra-
der et al. 2001). Second, estimates of air tempera-
tures required to reach FST thresholds need to be
determined. This aspect is the focus of this study.

Materials and methods

Fruit surface temperature data

Two adjacent Royal Gala apple blocks, one non-
netted and one netted, situated at Shepparton
(36.42°S, 145.46°E) in southeast Australia (Fig. 1)
were used for the experiment. The trees were
planted on MM106 rootstock using a central leader
trellis system with 2.0 × 4.5 m tree spacing. The
experiment was conducted in January 2013. In this
region, Royal Gala is usually harvested late January
to early February. The nets (Grey Quad 14; NetPro,
Stanthorpe, Queensland, Australia) were installed
at a height of 6 m above ground with open sides.
These nets provided an 18% reduction in incident
radiation and are in common use in parts of
Australia.

Ten trees in each of the non-netted and netted
blocks were selected. Of these, four trees in the
non-netted block and five trees (due to some
smaller tree sizes) in the netted block were used
to measure FST. Thermocouple sensors (Type T
thermocouples; Tranzflo NZ, Palmerston North,
New Zealand) were placed under the skin of 60
fruit in both the non-netted and netted blocks (i.e.
a total of 120 sensors). The sensors were distrib-
uted across the selected trees such that 20 sensors
were located in each of the upper, middle and
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Figure 1 Spatial area investigated and sites used for ana‐
lyses. *marks the study site for observations (Shepparton).
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lower parts of the canopy for both the netted and
non-netted blocks. Sensors were positioned to-
wards the western side of the tree to increase the
likelihood of reaching FST damage thresholds.
FST was logged at 1 min intervals (CR1000;
Campbell Scientific, Logan, Utah, USA). Average
air temperatures were concurrently measured
(HMP155; Vaisala, Vantaa, Finland) and logged
at 1 min intervals (Datataker DT80M; Thermo
Fisher Scientific, Yokohama, Japan) in both the
non-netted and netted blocks. Air temperature
sensors were shielded and positioned 1.5 m above
the ground surface. Both FST and air temperature
data were logged from 8–29 January 2013.

Observations of sun damage were conducted
for fruit on the 10 trees in the non-netted and
netted blocks. Damage was classified at harvest,
between 24 January and 4 February 2013, as
browning or necrosis, following descriptions by
Schrader et al. (2003a).

Air temperature threshold analysis

A conservative approach was taken to determine
minimum air temperature thresholds for potential
sun damage. Air temperatures at FST for browning
(47.8 °C) and necrosis (52 °C) thresholds (Schra-
der et al. 2001) were initially extracted for fruit in
the non-netted and netted blocks. To accommodate
FST that did not fall precisely on the threshold val‐
ue, a buffer of +0.2 °C was applied. Specifically,
air temperatures for FST between 47.8–48.0 °C

and 52.0–52.2 °C were extracted to represent brow‐
ning and necrosis, respectively.

The 10th percentile of the air temperatures at
these FST threshold ranges was then calculated.
This value was used to represent the minimum air
temperature threshold required for fruit to reach an
FST that can cause damage, i.e. a conservatively
low air temperature threshold that can cause sun
damage. It was assumed that at the 10th percent-
ile, other conditions that moderate damage were
acting to increase the potential of damage rather
than dampen. For instance, low wind conditions.
This was performed for browning and necrosis
FST thresholds and for non-netted and netted data.

Spatial analysis

Analysis of the total number of days in January
where daily maximum temperatures crossed the
minimum air temperature threshold for potential
damage was conducted using historical spatial
gridded data (0.05 × 0.05 °) for southern Australia
from 1911–2013, sourced from the Australian Bu‐
reau of Meteorology. These surfaces were produced
through a combination of empirical interpolation
and function fitting applied to Australia’s network
of quality controlled weather stations (Jones et al.
2009). Within the spatial data sets, 10 locations
situated in important Australian pome fruit-growing
districts were identified for individual site analyses
(Fig. 1 and Table 1).

Table 1 Location information. January maximum temperature data (1911–2013) calculated using AWAP data set.

Location
Latitude
(°S)

Longitude
(°E)

Mean January maximum
temperature (°C)

SD January maximum
temperature (°C)

Applethorpe 28.62 151.95 26.3 3.4
Batlow 35.52 148.14 26.1 4.5
Donnybrook 33.58 115.83 30.2 4.5
Huonville 43.01 147.06 21.9 4.4
Lenswood 34.94 138.79 25.4 5.8
Manjimup 34.18 116.07 27.4 4.7
Spreyton 41.22 146.35 21.0 2.6
Shepparton 36.33 145.40 29.4 5.0
Yarra Valley 37.84 145.68 25.2 5.5

AWAP, Australian Water Availability Project; SD, standard deviation.
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Across the historical data set, variation in the
total number of potential sun damage days in
January was assessed for southern Australia.
Differences in the number of potential damage
days between non-netted and netted results were
compared.

Results

Air temperature thresholds

Prior to analysis, exploration of FST data from the
120 fruit was conducted. Fruit were inspected
every 2–3 days to ensure that the sensors were in
place. In the event that a sensor had dislodged, the
sensor was reinstalled and the data for that sensor
was removed back to the time of the previous
inspection. Results from one thermocouple in the
lower canopy from the non-netted block were
excluded due to readings consistent with regular
wetting from an irrigation emitter. The numbers of
data points available for analysis were 1,330,588
and 1,587,606 for non-netted and netted fruit,
respectively.

Using these data, air temperatures as related to
FST for non-netted and netted fruit were consid-
ered (Fig. 2). A close relationship between FST
and air temperatures can be seen for cooler air

temperatures. At higher FSTs, greater variation in
air temperatures was observed, that is, a widening
of the air temperature range at a particular FST.

Non-netted and netted air temperatures that
related to necrosis (52.0–52.2 °C) and browning
(47.8–48.0 °C) FST thresholds were extracted. The
distribution of air temperatures along these FST
thresholds are shown in Fig. 3. No fruit recorded
an FST above 52 °C under netting (Fig. 2) and
hence no estimates of air temperature thresholds
were evaluated for necrosis damage under netting.

The 10th percentile of the extracted air tem-
peratures was calculated, providing a minimum air
temperature threshold at which sun damage may
occur. For browning in the non-netted and netted
blocks these values were 34.1 and 37.9 °C,
respectively. For non-netted necrosis damage, the
air temperature threshold was 38.7 °C.

In January 2013 at Shepparton, each of the air
temperature thresholds for potential damage was
surpassed several times (Table 2). Note that the
five necrosis damage days were also incorporated
in the potential browning days as the browning
threshold must be surpassed to reach the necrosis
threshold. In comparing the total potential for
damage between netted and non-netted fruit, the
relative risk of damage under netting was 54% of
that for the non-netted fruit.

Observations of sun damage at the study site
recorded differences between non-netted and net-
ted trees (Table 3) with lower levels of damage
recorded for fruit under netting (Table 3). A 50%
reduction of damage was found for fruit under
netting.

Historical potential damage analysis

To further investigate the number of potential sun
damage days historically and to provide visualisa-
tion of risk across Australia’s pome fruit-growing
regions, the air temperature thresholds (Table 2)
were applied to southern Australia (Fig. 4). Increas-
ing risk is observed from the south of the country
to the north. A lowering of risk along the eastern
seaboard reflects the higher elevation in that part of
Australia. Notable variation across the historical
data set was found (panels left to right in Fig. 4),

Figure 2 Fruit surface temperature (°C) recordings and
related air temperatures (°C). Necrosis and browning
FST thresholds represent 52 and 47.8 °C, respectively.
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representing the inter-annual variability in the num‐
ber of potential damage days in January.

The percentile levels can be taken to represent
different risk likelihoods, assuming the climate
data are sourced from a normal distribution. In this
analysis, the 10th and the 90th percentiles repres-
ent the low and high ends of the distribution of the
data while the 50th percentile is the median. For
example, the 10th percentile value was 2 days for
browning in the non-netted orchard at Shepparton
(Table 4). This can be interpreted as a 1 in 10 year
event that 2 or fewer damage days will be expe‐
rienced. Equally, this indicates there is a 9 in 10

year chance of 2 or more damage days occurring.
Using the upper end of the distribution, the 90th
percentile, indicates that receiving 12 or more
damage days is a 1 in 10 year event.

Locations in cooler regions (Huonville, Sprey-
ton, Applethorpe, Batlow) rarely crossed the air
temperature thresholds required for potential sun
damage. The data indicate that none of these cooler
sites recorded a day above the air temperature
threshold for browning under netting or necrosis
for non-netted fruit even at the 90th percentile of
the data. Batlow did record 4 days in January that
may lead to browning in non-netted blocks at the
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open. The 10th percentile of the AT data is shown by the arrow. n = sample size.
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90th percentile, which can be translated as a 1 in
10 year event.

Conversely, other pome fruit-growing regions
recorded consistent potential for sun damage. For
instance, Donnybrook, Shepparton and Young all
recorded potential damage days for browning in
non-netted blocks for each percentile level. This
can be interpreted, for Donnybrook, as a 9 in 10
chance of at least 3 days in January reaching
temperatures that could lead to browning of non-
netted fruit.

The wide range in potential damage days at
some sites demonstrates strong inter-annual variab‐
ility in the historical data. For instance, at Shep-
parton it can be expected that 2–12 days (capturing
80% of the historical data) in January could lead to
browning damage for non-netted fruit.

The benefit of netting in terms of reducing the
total number of potential damage days for brown-
ing is shown in Fig. 5. Note, this was not con‐
sidered for necrosis as an air temperature threshold
for necrosis under netting could not be defined.

Again variability is present with a minimal benefit
noted in some years (10th percentile), whereas other
years indicated great benefit (90th percentile).

The benefit of netting is clear when individual
sites within Australia’s fruit-growing regions were
considered (Table 5). For sites with few instances
of potential browning, these episodes were
reduced to nil with netting (Batlow, Huonville).
For locations with greater potential for browning
damage, substantial decreases in the total number
of potential damage days recorded (Young, Don-
nybrook, Shepparton). For these sites, particularly
notable gains for the more extreme of the histor-
ical data (90th percentile) were found (Table 5).

Discussion

Using previously established FST thresholds for
Gala apple (Schrader et al. 2001), air temperatures
that relate to potential browning and necrosis
damage for non-netted and netted fruit were
recorded at a site in southeastern Australia. A
wide range of air temperatures were found at the
specified FST thresholds (Figs 2–3). This range in
air temperatures for a given FST was expected and
represents a combination of different factors. These
include different microclimate conditions surround-
ing the fruit such as fluxes in relative humidity and
wind speed, variation in radiation received due to
fruit positioning and leaf shading, and fruit char-
acteristics such as size.

Appreciating this variability in air temperature
for a given FST, this study estimated minimum air
temperature thresholds for potential damage. This
was achieved by taking the 10th percentile of air
temperatures at two FST thresholds that represent
browning and necrosis. By taking this approach it
was assumed that other climate effects and fruit
characteristics were combining to cause damage
at these lower air temperatures. Therefore, the air
temperature thresholds determined were conser-
vatively low and are indicative of when damage
may begin to occur on some fruit, primarily the
more vulnerable fruit. The air temperature thresh-
olds calculated should not be regarded as deter-
ministic or a reflection of damage for a particular
fruit or for all fruit in the orchard. Rather, the

Table 3 Percentage of fruit affected by sun damage for
non-netted and netted fruit harvest from 10 trees each.

Browning (%) Necrosis (%) Total (%)

Non-netted 13.0 3.0 16.0
Netted 8.1 0.1 8.1

Table 2 Summary of total number of days for which
daily maximum temperature exceeded each air temper-
ature threshold for potential damage in January 2013 at
Shepparton.

Damage
Air temperature
threshold (°C)

Number of days in
January 2013

Browning
(non-netted)

34.1 13

Browning
(netted)

37.9 7

Necrosis
(non-netted)

38.7 5
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thresholds are an indication of minimum air
temperatures at which sun damage may begin to
develop.

Analyses of theminimumair temperature thresh‐
olds were expanded across southern Australia for

1911–2013 to demonstrate the flexibility of the
approach. Spatial patterns in the number of days
of potential damage follow a north-south gradient
and vary with topography. These analyses provide
insight into relative sun damage risk in opening of
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new areas for production or shifts in varietal mixes
at established growing regions.

For selected fruit-growing regions, it was found
that some sites are more exposed to potential sun
damage risk than others. This was expected, with
cooler regions (Spreyton, Huonville, Applethorpe)
illustrating very little risk. For warmer regions
(Donnybrook, Shepparton, Young), greater poten-
tial risk—that is, total number of potential damage
days—was accompanied by substantial inter-
annual variability. Considering potential browning
for non-netted fruit at Young, there is a 1 in 10 year
chance that 16 days or more in January will be

conducive to browning (90th percentile), equally
there is a 1 in 10 year chance of 1 day or less in
January being conducive to browning (10th per-
centile). Managing this variability in potential risk
is important to maintain yield and quality.

These broader analyses, both historically and
spatially, illustrate the flexibility for investigative
analyses of sun damage using the air temperature
thresholds determined to estimate conditions that
are conducive to damage. This approach over-
comes the data access limitations of more detailed
models that require greater data inputs (Thorpe
1974; Evans 2004; Schrader 2014). The methods

Table 4 Distribution of potential damage days in January for sites in Australia’s growing regions for 10th, 50th and
90th percentiles of the data.

Browning, non-netted Browning, netted Necrosis, non-netted

Site 10th 50th 90th 10th 50th 90th 10th 50th 90th

Spreyton 0 0 0 0 0 0 0 0 0
Huonville 0 0 1 0 0 0 0 0 0
Applethorpe 0 0 2 0 0 0 0 0 0
Batlow 0 0 4 0 0 0 0 0 0
Yarra Valley 0 2 5 0 0 1 0 0 1
Manjimup 0 3 5 0 0 2 0 0 1
Lenswood 0 3 6 0 0 2 0 0 1
Young 1 7 16 0 1 5 0 0.5 4
Shepparton 2 6 12 0 1 5 0 1 4
Donnybrook 3 7 11 0 1 3 0 0.5 2

Figure 5 Reduction in the number of potential browning damage days for January across 1911–2013 due to netting.
The colour-bar legend is measured in number of days.
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used here prioritised generalisation rather than
specificity. As such, only general remarks about
changes in potential conditions for damage can be
made. To interpret damage to individual fruit, use
of multivariate models is still required.

These thresholds could be used to consider the
risk of sunburn damage under future climates as
only maximum temperatures are required to estim-
ate conditions that may lead to damage. Assess-
ments considering netted and non-netted thresholds
could be conducted to highlight any increasing
protection offered by shade netting. Note this would
only be possible for browning damage as this study
was unable to determine a necrosis air temperature
threshold as fruit did not reach the required FST for
damage. Finally, the air temperature thresholds can
be used by growers as a guide for when to use
overhead sprinklers for evaporative cooling in
efforts to minimise potential damage.

These results have illustrated the benefit of
shade netting in lowering sun damage risk (Table 5
and Fig. 5). Previous investigations have shown
that shade nets are effective in decreasing sun
damage by reducing incident solar radiation (Igle-
sias & Alegre 2006; Gindaba & Wand 2008). In
this study, a reduction in the number of days of
potential browning was quantified across Australia
(Fig. 5). Using Young as an example, a decrease of
1–11 days of potential damage (for 80% of the

historical data) was found, reducing the number of
potential damage days by 68%–100%.

This benefit of netting needs to be balanced
against other possible drawbacks. For instance, Do
Amarante et al. (2011) found a reduction in red
coloration and lower firmness values of Royal Gala
under netting. Changes to management practices,
such as use of reflective mulch, would assist in
combating some of these implications. An import-
ant limitation of installing netting is the expense. In
Australia, the initial capital cost of erecting netting
has been estimated at AU$40,000 per hectare
(Lolicato 2011). For sites with minimal reduction
in sun damage with the installation of netting
(Applethorpe, Batlow), investing in netting may
not be practical, although the other benefits that
netting provides, such as a reduction in hail and bird
damage, should be considered in decision-making
processes.

Assessments of sun damage rates on the experi-
mental trees (Table 3) provide support for the air
temperature thresholds. Using the estimated air
temperature thresholds, it was determined that for
January 2013 there were 13 and 7 days (Table 2)
with potential for damage for non-netted and netted
fruit, respectively. Therefore the potential for dam-
age under the nets was predicted to be 46% lower
than for non-netted fruit. This was broadly sup-
ported in the damage assessments, with a 50%
reduction found in browning of fruit under nets.
Other effects may have influenced the observed
damage rates, including temperatures experienced
during December, which were not included in the
analysis. Additionally, the total predicted potential
damage days may have identified individual days as
damage days that did not lead to any observed fruit
damage. As damage assessments occurred at har-
vest, this cannot be determined.

In interpreting these results, appreciation of
the assumptions in the methodology is needed.
FST thresholds used in this study were determined
in North America (Schrader et al. 2003b). Higher
ultraviolet radiation conditions are experienced in
Australia compared with the northern hemisphere
due to lower ozone protection. For this reason, the
transferability of FST thresholds between hemi-
spheres was questioned by Racsko & Schrader

Table 5 Difference in total number of potential
browning days between open and netted fruit. Bracketed
is the percentage reduction from open values.

Site
10th

percentile
50th

percentile
90th

percentile

Spreyton 0 (NA) 0 (NA) 0 (NA)
Huonville 0 (NA) 0 (NA) 1 (100%)
Applethorpe 0 (NA) 0 (NA) 1 (53%)
Batlow 0 (NA) 0 (NA) 4 (100%)
Yarra Valley 0 (NA) 2 (100%) 4 (80%)
Manjimup 0 (NA) 2 (67%) 4 (80%)
Lenswood 0 (NA) 2 (67%) 5 (83%)
Young 1 (100%) 5 (71%) 11 (68%)
Shepparton 2 (85%) 4 (67%) 7 (60%)
Donnybrook 2 (67%) 5 (71%) 9 (82%)

NA indicates no browning events for fruit in the open.
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(2012). Further research following Schrader et al.
(2003b) is required to assess if there are differ-
ences in FST thresholds between the northern and
southern hemispheres.

In order to extend the results of this study, the
air temperature threshold values found for Shep-
parton were expanded across southern Australia.
Other sites may have weather conditions that
combine differently than those at Shepparton to
determine FST. The conservative approach taken
here should act to minimise potential underesti-
mates of damage rates with field observations
needed for verification of transferability of these
air thresholds.

Conclusion

This study determined theminimum air temperature
thresholds that represent potential for sun damage
for Royal Gala apple in non-netted (browning and
necrosis) and netted (browning) blocks. Results
were constructed using a conservative approach
indicating when damagemay start to occur for some
fruit in the orchard. Application of the approach
spatially and temporally was demonstrated, provid-
ing historical context for sunburn damage risk
and assessment of relative risk between locations.
Such an analysis has not been previously possible
due to data limitations of more detailed sun
damage models. The protection offered by netting
was interpreted and the relative benefits of installa-
tion demonstrated. Using the methods in this study
to determine air temperature thresholds, further
research is possible including expansion to other
varieties, assessments of climate change impacts
and the use of shade netting as an adaptation
strategy.
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a  b  s  t  r  a  c  t

High  fruit  temperatures  compromise  fruit  quality  and cause  production  losses  in the  apple industry.  In
south-eastern  Australia,  orchardists  have  begun  investing  in netting  because  of empirical  evidence  that
it reduces  these  losses,  but the magnitude  of its  effect  and  mechanisms  responsible  have  not  yet  been
quantified.  Models  of fruit  temperature  based  on  meteorological  conditions  could  inform  the  design  of
netting  structures,  and  improve  tactical  management  to reduce  sun  damage  through  treatments  such  as
protective  sprays  and  the  use of  overhead  irrigation  to  cool  fruit.  The  objectives  of  this  study  were  firstly
to  measure  the  effect  of  netting  on  fruit  surface  temperature,  and secondly  to test  the  thermodynamic
Smart-Sinclair  model.  The  study  was  conducted  near  Shepparton,  Victoria,  in an  orchard  where there
were  adjacent  netted  and  non-netted  sections.  During  late  afternoon  when  sun  damage  normally  occurs,
netting  was  able  to reduce  the  median  fruit  surface  temperature  by  1.5–2.0 ◦C,  but  there  was  a  greater
reduction  in  maximum  fruit  surface  temperature  of  4.0 ◦C. The  model  required  calibration  to  account
for  turbulence  in  the  transfer  of  heat  from  fruit  to  the  surrounding  air. The  optimised  model  was  able
to predict  fruit surface  temperature  with  a root  mean  square  error  of  2–4 ◦C. The  mechanism  for  the
reduction  in  fruit  surface  temperature  was  by  reducing  the  intensity  of  the  solar  beam  in the  late  afternoon
by  interception  and  scattering,  which  more  than  offset  the  potential  fruit  heating  effect  of netting  that
occurs  through  a reduction  in  internal  orchard  wind  speed.

Crown Copyright  © 2016  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

Fruit exposed to high temperatures while growing on the tree
suffers reduced quality, particularly in apples (Malus domestica
(L.)). Reports from South Africa, USA, Australia and New Zealand
suggest that pack-house culls of 10% could be expected in typical
seasons (Bergh et al., 1980; Schrader et al., 2004; Wünsche et al.,
2001) but losses can be much higher as these estimates do not
include severely damaged fruit that is not picked. In Australia, apple
growers estimate typical losses to vary from 6 to 30%, depend-
ing on season and fruit variety (Lolicato, 2011). Following some
years of high losses, orchardists have begun investing in netting
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(S. Green), debra.partington@ecodev.vic.gov.au (D.L. Partington).

as a risk reduction strategy because of empirical evidence that it
reduces these losses, but the magnitude of its effect and mecha-
nisms responsible have not yet been quantified.

Schrader et al. (2003) identified fruit surface temperature
thresholds at which two  types of damage occurs. At a threshold of
between 46 and 49 ◦C sunburn browning occurs, which consists of
discolouration of the sun-exposed peel that reduces the saleability
and storage life of the fruit. The threshold is cultivar-dependent,
and requires a combination of both high temperatures and solar
radiation. Protecting fruit from exposure to ultraviolet radiation
greatly reduces the occurrence of sunburn browning (Schrader,
2011). At a threshold of 52 ◦C sunburn necrosis occurs, in which
epidermal and subepidermal cells die leaving a necrotic spot on the
sun-exposed side of the fruit. This type of damage can occur in the
absence of solar radiation if the temperature threshold is reached.
Fruit surface temperatures are dependent not only on the air tem-
perature, but also solar radiation that heats the sun-exposed fruit
surface, and wind that removes heat from the surface. Under condi-
tions of high solar radiation and low wind speeds, the sun-exposed

http://dx.doi.org/10.1016/j.agrformet.2016.05.017
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surface of fruit can be up to 15 ◦C warmer than air temperature
(Schrader et al., 2003).

Several thermodynamic models have been developed to cal-
culate temperatures in spherical fruit such as apples. Internally,
these models use similar parameters and equations. Thorpe (1974)
described a thermodynamic model of apple surface temperature,
which included the effects of solar radiation, wind and the conduc-
tion of heat to the shaded side of the fruit. This model developed
further by Smart and Sinclair (1976), who presented a series of
equations that solve for the temperature of the most sun-exposed
surface of spherical fruit, known as the “hot-spot”. Since exces-
sive hot-spot temperatures are sufficient to downgrade the entire
apple, this is the most useful parameter to model. Later, Evans
(2004) described a model that calculated the surface temperature of
apples under evaporative cooling. Sauderau et al. (2007) presented
a 3-dimensional model that calculated temperatures at all parts of
ellipsoid fruit. Cola et al. (2009) described a model of grape tem-
perature, which was validated at several sites in Italy, while Li et al.
(2014) built on previous models and tested it on apples in Washing-
ton State, USA. Apart from Cola et al. (2009) and Li et al. (2014), these
models have only had limited field validation, and none have been
tested under netting. Potential uses of a validated model include
both tactical and strategic management. Tactically, fruit surface
temperature could be calculated from numerical weather forecasts
so protective sprays can be applied prior to heat events, or evapora-
tive cooling used when fruit surface temperature reaches a damage
threshold. Strategically, the value of investment in infrastructure,
such as netting or evaporative cooling systems, could be investi-
gated with consideration of future climate change scenarios.

The objectives of this study were firstly to measure the effect
of hail netting on fruit surface temperature and orchard microcli-
mate, secondly to test the thermodynamic Smart-Sinclair model,
and thirdly to quantify the mechanisms by which netting reduces
sun damage.

2. Material and methods

Briefly, fruit surface temperatures were measured in adjacent
netted and non-netted areas of a commercial orchard. Simulated
fruit surface temperature was calculated using a modified ver-
sion of the thermodynamic model developed by Smart and Sinclair
(1976) using either microclimate measurements taken within the
orchard, or surrogates derived from standard weather data mea-
sured external to the orchard. Table 1 summarises parameters used
in the model and symbols used in this paper.

2.1. Field measurements

Fruit surface temperatures of Royal Gala apples were moni-
tored at two sites (“netted” and “non-netted”) within a commercial
orchard located north of Shepparton Australia. The majority of the
orchard was covered by permanent hail netting, except for five rows
in the eastern side. The netting (Grey Quad 14, NetPro Pty Ltd, Stan-
thorpe, Qld, Australia) had a 10% shade rating and was installed 6 m
above the ground with open sides. We  refer to the product as “hail
netting” because its primary purpose is to protect from hail, and
to distinguish it from shade-cloth that has shade ratings of 16–80%
(NetPro, 2010). Fruit surface temperatures were monitored from 8
January 2013 until the first fruit were harvested on 24 January 2013.
At each site, 60 fruit were selected from 4 trees; 20 fruit were in
the upper canopy, 20 in the middle and 20 in the lower canopy.
Monitored fruit were selected from fruit on the western sides of
trees that would be exposed to direct radiation in the afternoon,
in the expectation that maximum daily fruit surface temperatures
normally occur in the mid-afternoon between 1430 and 1645 h

(Schrader et al., 2003). Copper-constantan thermocouples (Type T,
Tranzflo NZ Ltd, Palmerston North, New Zealand) were inserted
under the fruit skin on the sun-exposed face. Data were logged by
four data loggers (CR1000, Campbell Scientific, Logan, Utah, USA),
at each site at 1 min  intervals. The target of 60 monitored fruit was
sometimes not achieved because of datalogger difficulties, some
sensors becoming dislodged from the fruit and because two  log-
gers were not installed until 15 January. On the 2 hottest days (for
which detailed data are reported later in the paper), 44 fruit were
monitored under netting and 38 in the non-netted orchard on 11
January, while the equivalent numbers were 59 and 58 respec-
tively on 17 January. The diameters of the monitored fruit were
recorded on 11, 16 and 23 January 2013. Fruit were harvested,
counted and weighted between 24 January and 4 February 2013
from 10 trees each in the netted and non-netted sites including
the 4 trees logged for temperature. Fruit harvested from the 4 trees
logged for temperature were visually assessed for sunburn damage.
Damage was classified as (i) minor sunburn browning, (ii) major
sunburn browning, (iii) necrosis, or (iv) photo-oxidative sunburn
(Racsko and Schrader, 2012).

The microclimate was  monitored at the netted and non-netted
sites and data logged (DataTaker DT80M, Thermo Fisher Scientific
Inc., Yokohama, Japan) at 1 min  intervals. Air temperature (Tair , ◦C)
and humidity (HMP155, Vaisala Oyj, Vantaa, Finland) were mea-
sured at 1.5 m height with the sensor mounted in a cylindrical
white aluminium screen. Wind speed (v, m/s) was measured by
cup anemometers (PA2 Wittich and Visser, Rijswijk, Netherlands)
in the lower, middle and upper canopy at heights of 1, 2, and
3 m.  Diffuse and total radiation (Rdf and Rs, W/m2) and ultraviolet-
B (UV-B, W/m2, 280–315 nm)  were monitored above the canopy
at 3 m height (SPN1, Delta T Devices, Cambridge, UK; SKU430,
Skye Instruments, Llandrindod, Wales). Adjacent to the orchard the
external environment was logged (6004C-21 STARLOG; Unidata,
O’Connor, Australia) at 10 min  intervals. Humidity and Tair (HMP
45A-T, Vaisala, Oyj, Vantaa, Finland) were measured at 1.5 m height
with the sensor mounted in a cylindrical white aluminium screen.
A cup anemometer (Wind sensor compact, Thies Clima, Gottingen,
Germany) was  used to measure v at 2 m height. Data from the exter-
nal weather station were only available 8–29 January, whereas data
from the orchard weather stations were available 1–31 January.
Potential evapotranspiration (ETo, mm)  was calculated on a 10 min
timestep from weather data measured in the netted and non-netted
orchards by the FAO56 equations of Allen et al. (1998).

At both the netted and non-netted sites, trees were irrigated
by microjet sprinklers spaced midway between trees and approxi-
mately 0.3 m above the soil surface. Trees were 1.5 m apart trained
on a central leader system in rows 4.8 m apart, and rows were
oriented NNW-SSE (345◦). Tree age, variety, rootstock and man-
agement did not differ between the netted and non-netted sites,
with the exception of increased irrigation flow rates in the non-
netted area. All management activities (irrigation, fertilisation, and
weed and pest control) were undertaken by staff of the commercial
orchard.

2.2. Fruit temperature modelling

Smart and Sinclair (1976) proposed the following algebraic solu-
tion to calculate the instantaneous temperature increment above
Tair on the sun-exposed surface of the fruit (�Tmax, ◦C) as

�Tmax = I0 (1 − �) (ks + 4h.r)
(r.h + ks) 4h

(1)

where I0 is incident solar radiation received by a fruit surface per-
pendicular to the solar beam (W/m2),  ̨ the reflectance of the fruit
surface (albedo), ks the thermal conductivity of the fruit (W/(m ◦C)),
h the heat transfer coefficient from the fruit surface to the atmo-
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Table 1
Symbols used in this paper, and source of the values used.

Symbol Units Explanation Values/source

� Unitless fraction Reflectance of the fruit surface 0.4, Merzlyak et al. (2003)
d Days Day number (1 Jan = 1) Calculated
dr Relative units Relative inverse distance between the earth and sun

(range 0.967–1.033)
Calculated according to equation 23 of Allen
et al. (1998)

D m Fruit diameter Measured
ı  m Thickness of the boundary layer of still air at the fruit

surface
Equation 5 of this paper, based on Nobel (1975)

ETo mm Potential evapotranspiration Calculated according to Equation 6 of Allen
et al. (1998)

f Unitless factor Calibration factor Fitted
Gsc W/m2 Solar constant 1367 W/m2, Allen et al. (1998)
h W/(m2 ◦C) Heat transfer coefficient Equation 5b of Smart and Sinclair (1976)
I0 W/m2 Solar radiation received on a fruit surface normal to

the solar beam
Equation 2 of this paper, based on Smart and
Sinclair (1976)

ka W/(m ◦C) Thermal conductivity of air, 2.55 W/(m ◦C) Smart and Sinclair (1976)
ks W/(m ◦C) Thermal conductivity of the fruit Equation 9 of Smart and Sinclair (1976)
r m Fruit radius Measured
Ra W/m2 Extraterrestrial solar radiation on a plane horizontal to

the earth’s surface
Calculated by equation 28 of Allen et al. (1998)

Rs W/m2 Total solar radiation measured on a plane horizontal to
the earth’s surface

Measured

Rdf W/m2 Indirect solar radiation measured on a plane horizontal
to the earth’s surface

Measured

RUVB W/m2 Solar radiation in the ultraviolet-B band, 280–315 nm Measured
Tair

◦C Air temperature Measured
Tfr,mx

◦C Temperature of the hottest face of sun-exposed fruit in
the orchard

Measured

�Tmax
◦C Difference between fruit surface temperature and air

temperature
Calculated from measurements and equation 1
of  Smart and Sinclair (1976)

v m/s  Wind speed Measured
zd degrees Zenith angle of the sun (degrees from vertical) Calculated according to Jacobson (2005)
zr radians Zenith angle of the sun (radians from vertical) Calculated according to Jacobson (2005)

sphere (W/(m2 ◦C)), and r the radius of the fruit (m). In our study,
I0 was calculated as

Io = Gscdr
Rs − Rdf

Ra
+ Rdf /2 (2)

where Gsc (W/m2) is the solar constant, dr the inverse relative dis-
tance between the earth and the sun, Rs total radiation measured
above the canopy on a horizontal plane, Ra (W/m2) extra-terrestrial
radiation on a horizontal plane, and Rdf diffuse radiation measured
on a horizontal plane above the canopy. In Eq. (2) it is assumed
that the sunlit fruit face was  exposed to only half the Rdf measured
on a horizontal plane (Smart and Sinclair, 1976). The terms Gsc , dr

and Ra were calculated according to Allen et al. (1998). Reflectance
(˛) was set at 0.4 based on data from Merzlyak et al. (2003), who
reported a range from 0.35 for dark red fruit to 0.45 for pale fruit.
Thermal conductivity of fruit (ks) is related to apple temperature
and was calculated as

ks = 0.297 + 0.0024Tfr,mx (3)

based on Lisowa et al. (2002), where Tfr,mx is the temperature of
the hottest face of sun-exposed fruit in the orchard calculated in the
previous iteration (see Eq. (7) below). The heat transfer coefficient
h was calculated as

h = ka

ı
+ 2ka/D (4)

where ka is the thermal conductivity of the air 0.0257 W/(m2 ◦C),
ı the thickness of the boundary layer of still air at the surface of
the hot-spot of the fruit (m), and D the fruit diameter (m); ı was
estimated from v and D by an equation based on Nobel (1975),

ı = f

(
0.28

√
D

v
+ 2.5

v

)
(5)

where f is a calibration factor. Values of v were set to a minimum
value of 0.5 m/s  to avoid division by zero. D was calculated from
measurements of fruit diameter interpolated by a linear regression
relationship between measurement dates,

D = (57.84 + 0.2133d)
100

(6)

where d is the day number (1 January = 1). Preliminary runs of
the model indicated that without a calibration factor, ı was too
high resulting in insufficient heat transfer from the fruit surface
to the surrounding air, and simulated fruit surface temperatures
were much higher than observed. The model was calibrated using
a range of values of f from 0.1 to 1.0 in increments of 0.05, and cal-
culating the root mean square error (RMSE) of differences between
calculated fruit surface temperatures and the maximum fruit sur-
face temperature in each 10 min  period. The optimum value of f
was that with the lowest RMSE. A similar approach was  used by
Cola et al. (2009) in calibrating aerodynamic roughness to mea-
sured fruit temperature in grapevines from wind speeds measured
at a weather station external to the vineyard. Separate values of f
were sought for the netted and non-netted sites, with v measured
either at 3 m height within each orchard or at the weather station
external to the orchard. The first half of the data set from 9 to 15
January 2013 was used for model calibration, and the remaining
data was  used for validation. Since the monitored fruit were only
exposed to the afternoon sun, only data from 1400 to 1700 h were
used for calibration and validation.

The temperature of the hottest face of sun-exposed fruit in the
orchard (Tfr,mx, ◦C) was then calculated as

Tfr,mx = �Tmax + Tair (7)

where Tair (◦C) is the measured air temperature, and �Tmax the
simulated difference between air temperature and fruit surface
temperature. Calculations were performed on a 10 min  timestep,
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Table  2
Harvested yield, fruit weight and sunburn damage from the netted and non-netted
sites in the orchard, and the statistical significance of differences.

Netted Non-netted Significance

Total fruit yield (t/ha) 34.6 37.3 0.564
Fruit weight (g/fruit) 153 125 <0.001
Minor sunburn browning (% by weight) 7.7 10.4 0.014
Major sunburn browning (% by weight) 0.4 2.6 0.007
Necrosis (% by weight) 0.1 3.0 0.003
Photo-oxidative sunburn (% by weight) 0.2 0.7 0.135
Total damage (% by weight) 8.3 16.7 0.002
Yield of undamaged fruit (t/ha) 31.7 31.1 0.282

but final output was calculated as a moving average of the previous
30 min  to compensate for the lack of thermal mass in the equations.

2.3. Supplementary site

To test its structure and calibration, modelled Tfr,mx was com-
pared with measurements taken at a supplementary site east of
Shepparton. Measurements were made in a commercial Royal Gala
orchard without netting, in which trees were planted at 2.5 m spac-
ing in rows 5.0 m apart and irrigated at the tree base by microjet
sprinklers. This site was part of a larger study of evaporative cooling
(Green et al., 2011), and data reported here are for 3 apples without
cooling on the north-west side near the top of the canopy where
protective foliage had been removed. Copper-constantan thermo-
couples were inserted beneath the north-west facing surface of
sun-exposed apples on 27 January 2011 and temperatures mon-
itored until harvest on 10 February. Temperatures were measured
at 10-s intervals and logged (CR1000, Campbell Scientific, Logan,
Utah, USA) at a 1-min frequency. Fruit diameter was  measured
on 25 January and 7 February. In a nearby clearing surrounded by
orchards, an automatic weather station recorded air temperature,
solar radiation and wind speed at a 2 m height at a 15-min fre-
quency. Solar radiation was measured at 2 m height using a silicon
photodiode pyranometer (SK01D; Carter-Scott Design, Brunswick,
Australia). PAR was measured at 2 m height using a silicon photo-
diode quantum sensor (PAR sensor; Tranzflow, Palmerston North,
New Zealand). Air temperature and humidity were measured at
a 1.5 m height (HMP 45A-T; Vaisala, Vantaa, Finland) mounted
in a cylindrical white aluminium screen. Wind speed was mea-
sured using a 3-cup anemometer at 2-m height (AN2; Monitor
Sensors, Caboolture, Australia). Measurements were taken every
30 s and the average calculated and stored at 15-min intervals in a
data logger (DT500; Datataker, Scoresby, Australia). Supplementary
wind measurements were also taken from the Irrigateway network
(http://awsdata.it.csiro.au:8000/id/station/TATR). These measure-
ments were taken at a 2 m height on an exposed site at the Tatura
Research Station operated by the Department of Economic Devel-
opment, Jobs, Transport and Resources.

2.4. Statistical analysis

Fruit yield and sunburn damage data from each tree were com-
pared by one-way analysis of variance. Residuals were checked for
normality and homogeneity of variance. No transformations were
required on any of the variables. Solar radiation observations in
the netted orchard were compared with the non-netted orchard by
means and descriptive linear regression, with a focus on the after-
noon (1400–1700 h) when the risk of sun damage is greatest. Data
for Tair , relative humidity and v from the netted and non-netted
orchards were compared with the weather station external to the
orchard using a combined linear regression with the site (netted or
non-netted) as a factor. This enabled the orchard microclimate to
be estimated from weather data external to the orchard.

Since the model requires some non-standard weather data
parameters, relationships were sought to predict these from
standard parameters. Prediction equations of these non-standard
parameters – Rdf in the non-netted orchard, and both Rdf and
Rs under netting – were sought by linear regression from 10 min
weather data collected between 1 and 15 January 2013 using rela-
tionships of the form

Rdf

Rs
= a + b

Rs

Ra
+ c

1
AM

+ d
(

Rs

Ra

)  (
1

AM

)
;

Rs

Ra
> e (8)

where the coefficients a, b, c, d, and e are derived from the regres-
sion, and AM the air mass number, to account for solar angle effects.
The Rs/Ra component of this function was  based on Spitters et al.
(1986), who recommended a series of split line relationships to esti-
mate Rdf /Rs from Rs/Ra. According to these relationships, under
heavy cloud (low Rs/Ra), the proportion of total radiation that is
diffuse (Rdf /Rs) is not influenced by Rs/Ra up to a break point, after
which there is a linear relationship with Rs/Ra. The term AM is used
in astronomy and the solar power industry to describe the path
length of the solar beam in the atmosphere relative to a direct ver-
tical path, and was calculated by an empirical function of Kasten
and Young (1989),

AM = 1/(cos zr + 0.050572(6.07995 + 90 − zd)−1.6364 (9)

where zr and zd are the zenith angle of the sun in radians and
degrees respectively. The value of AM ranges from close to 1 when
the sun is overhead to over 10 at dawn or dusk. The inverse of
AM was  used in the regression analyses because the attenuation
of the solar beam through scattering and absorption would be
expected to follow an inverse relationship with path length. Sim-
ilar effects would be expected as the solar beam passes through
netting. To determine parameters, the Genstat split line regres-
sion procedure was first used to estimate e independent of AM.
This set a break point for the split line relationship, and below
this threshold the break point value of Rdf /Rs was used. Values
of Rs/Rain excess of e were then selected to determine the other
parameters using generalised linear regression. A similar approach
was used to estimate netted Rs/Ra from non-netted Rs/Ra, but no
break point was  required. Since the intent was to develop esti-
mates at times of risk of sun damage, input values were constrained
to times when Ra exceeded 380 W/m2 to avoid refractive effects
that occur close to dawn and dusk when the sun is near the hori-
zon. This constraint limited data to 0640–1800 h in mid-January.
Another required constraint was to remove 10 min periods when
Rs exceeded clear-sky radiation, which was assumed to be 0.8 Ra.
These periods occurred when Rs included radiation reflected from
clouds, and could at times predict negative values of Rdf . Statistical
analyses were conducted using Genstat (14th Edition, VSN Interna-
tional, Hemel Hempstead, UK). Model predictions were compared
with measurements by the root mean square error (RMSE).

2.5. Sensitivity analysis

Sensitivity of the model to its inputs was tested by varying indi-
vidual parameters by either the range reported in the literature, or
for weather parameters the range measured in our study between
1400 and 1700 h. The range for � was from 0.1 (Sauderau et al.,
2007) to 0.6 (Evans 2004), ks from 0.28 to 0.54 W/(m ◦C) (Smart
and Sinclair, 1976; Donsi et al., 1996; Lisowa et al., 2002), v from 0.1
to 3.4 m/s, Rs 60–1040 W/m2, Rdf 50–580 W/m2, and Tair 15–42 ◦C,
while D was  varied from 0.049 to 0.080 m based on measurements
of individual fruit. The parameters not varied were taken from the
time of maximal Tfr,mx during the study, which was from the non-
netted orchard from 1610 to 1620 h on 17 January 2013.

http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
http://awsdata.it.csiro.au:8000/id/station/TATR
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3. Results

3.1. Sunburn damage and fruit yield

Fruit in the non-netted orchard had twice the rate of sunburn
damage as that in the netted orchard (17 vs 8%) (Table 2). The great-
est differences were in the major sunburn browning and necrosis
categories. Total fruit yield in the non-netted orchard was  8% higher
than with netting, but the yield of undamaged fruit was 2% lower.
These differences in fruit yield were not statistically significant
because of a relatively high coefficient of variation between indi-
vidual trees of 29%. Fruit harvested from the non-netted orchard
were smaller than those with netting (125 vs 153 g).

3.2. Fruit surface temperatures

Measured Tfr,mx were up to 14.4 ◦C higher than Tair with net-
ting during the afternoon, and up to 16.7 ◦C without netting, but
at night the differences were small (Fig. 1). The two  days with the
highest Tfr,mx were the 11th of January (a clear day) and the 17th
of January (a partly cloudy day). As the days with the greatest risk
of sun damage, these were examined in greater detail. The proba-
bility distribution of the maximum temperature achieved in each
monitored fruit for these days shows that with netting the median
temperature was 1.5–2.3 ◦C cooler with netting than without, but
that the maximum temperature was 4.0 ◦C cooler (Fig. 2). On the
clear day (11 January) 45% of non-netted fruit exceeded the thresh-
old of 46 ◦C at which sunburn browning occurs (Schrader, 2011),
compared with only 9% under netting. However, on the partly
cloudy day (17 January) the proportions exceeding the threshold
were much higher at 79% without netting and 32% with netting.
Measured Tfr,mx on the clear day showed a broad peak in the late
afternoon, whereas on the partly cloudy day there was a series
of sharp peaks (Fig. 3). These peaks coincided with short periods
of high solar radiation between clouds. The upper quartile of fruit
surface temperature peaked late in the afternoon at 1600–1700 h.

3.3. Netted vs non-netted microclimates

Microclimate differences between the netted and non-netted
orchards are addressed here, first for the entire month of January,
then in greater detail for the two days when the highest fruit sur-
face temperatures were recorded. Averaged across all afternoons in
January 2013, the netted orchard had 15% less total radiation than
the non-netted orchard, 32% lower UV-B and a 13% lower potential
evapotranspiration, but 20% more diffuse radiation (Table 3). For
the whole month of January 2013, potential evapotranspiration was
also 13% lower under netting than without (159 vs 183 mm/month).

Descriptive linear regressions of radiation parameters during
the afternoon between the netted and non-netted orchards showed
a high level of correlation, with R2 values of between 0.881 and
0.987 (Table 3). All slopes and intercepts were statistically signif-
icant (P < 0.001), indicating that there were significant differences
in radiation parameters between the environments.

Fig. 1. Measured (blue) and simulated (red and orange) fruit surface tempera-
ture of the hottest face of sun-exposed fruit (Tfr,mx) and orchard air temperature
(green) at (a) netted, and (b) non-netted, with simulated Tfr,mx calculated from wind
speeds measured external to the orchard. Simulated temperatures are shown in red
between 1400 and 1700 h, and orange at other times. Arrows show spikes in simu-
lated values at times of low wind speed and high direct radiation before 1000 and
after 1700 h. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

In the afternoon v at the netted site was  lower (22–24%) at a 3 m
measurement height, but there were no significant differences in
Tair (Tables 4 and 5). At night the netted orchard was  more humid
than the non-netted orchard and had lower v.

Predictive relationships for Rdf and Rs under netting based on Eq.
(8) showed root mean square errors of between 17 and 71 W/m2

(Table 6). In each case all the slopes and intercepts were statistically
significant (P < 0.001). Using these relationships for a theoretical
clear day (defined as Rs/Ra = 0.75) in mid-January, netting reduced
Rs by 10% at 1230 h, but by 20% at 1620 h. Equivalent reductions in
Io were 22% and 26% respectively.

On the clear day, Rs closely followed the pattern of Ra, but on
the cloudy day the pattern was spikey with short periods when
Rs was  up to 13% greater than at the same time on the clear day

Table 3
Summary of differences in afternoon radiation and ETo (1400 and 1700 h Eastern Australian Standard Time) between netted and non-netted environments 1–31 January 2013,
compared by their arithmetic mean, and linear regression as y = a + bx where y is the parameter under netting, a the intercept, b the slope, and x the parameter without
netting.

Parameter Means Regression

Netted Non-netted Difference (%) Intercept Slope R2

Global radiation (Rs , W/m2) 616 726 −15 −67.7 0.941 0.982
Diffuse radiation (Rdf ,W/m2) 141 117 20 63.1 0.666 0.881
Ultraviolet radiation-B (UV-B, W/m2) 1.26 1.84 −32 −0.0734 0.723 0.997
Reference evapotranspiration (ETo mm/hr) 0.47 0.54 −13 −0.0046 0.924 0.987
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Fig. 2. Cumulative probability distribution of the maximum fruit surface temperature measured in non-netted and netted sections of the orchard on (a) a clear day (11
January  2013) and (b) a partly cloudy day (17 January 2013).

Fig. 3. Fruit surface temperature (Tfr ) measured in the netted and non-netted sections of the orchard, showing the maximum, upper quartile, median and minimum, and the
simulated orchard maximum modelled from weather data according to Eq. (7) for a clear day (11 January) and a partly cloudy day (17 January).

Table 4
Summary of air temperature, humidity and wind speed during afternoons (1400–1700 h Eastern Australian Standard Time) and nights (2000–0500 h) in the netted orchard,
non-netted orchard and external environment 8–29 January 2013.

Parameter Afternoon Night

Netted Non-netted External Netted Non-netted External

Air temperature (◦C) 31.7 32.2 30.1 17.1 17.3 17.9
Relative humidity (%) 29.3 27.5 26.3 69.8 66.0 62.2
Wind speed (m/s)
3 m 1.22 1.56 0.55 0.84
2  m 0.80 0.74 2.66 0.30 0.23 1.70
1  m 0.20 0.35 0.04 0.06

(Fig. 4). On the clear day without netting about 10% of radiation
was in the diffuse form, whereas under netting it was 17%. The
percentage of Rs transmitted through the net was similar on both
days, and ranged from 89% at midday to about 60% close to dawn or
dusk. Estimated Io reached a broad maximum around the middle of
the day, after which it declined more rapidly under netting than in

the non-netted orchard. At a height of 3 m v was  about 20% lower
under netting, but there was little difference in Tair (Fig. 5). At both
sites there were low wind speeds in the evening and night. On  17
January these nearly calm conditions had started by 1725 h. Differ-
ences between the netted and non-netted environments close to
the time of maximum fruit surface temperature are summarised in
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Table 5
Microclimate in the netted and non-netted sites expressed as a linear function of readings at the weather station external to the orchard, where environment (netted or
non-netted) was  a factor in the analysis. Significance of differences between netted and non-netted in intercept or slope are shown as *** for P < 0.001, ** for P < 0.01, * for
P  < 0.05, − for P < 0.1, ns for not significant.

Afternoon (1400–1700 h) Night (2000–0500 h) All hours

Intercept Slope R2 Intercept Slope R2 Intercept Slope R2

Air temperature (◦C)
Netted 1.09 0.967 0.987 −0.24 0.938 0.962 −1.33 1.024 0.978
Non-netted 1.58 0.968 −1.24 1.009 −1.39 1.047
Difference 0.49 0.001 −1.01 0.070 −0.06 0.022
Significance of difference – ns *** *** ns ***

Relative humidity (%)
Netted 6.85 0.953 0.987 10.50 0.956 0.86 7.83 0.983 0.951
Non-netted 4.82 0.959 −0.14 1.075 3.44 1.003
Difference −2.03 0.005 −10.64 0.119 −4.39 0.020
Significance of difference *** ns *** *** *** ***

Wind  speed (m/s)
Netted 3 m −0.12 0.477 0.912 −0.18 0.468 0.918 −0.18 0.476 0.917
Non-netted 3 m −0.18 0.627 −0.16 0.642 −0.16 0.633
Difference −0.05 0.150 0.02 0.174 0.02 0.157
Significance of difference ns *** ns *** – ***
Netted 2 m −0.24 0.370 0.824 −0.18 0.307 0.832 −0.21 0.337 0.800
Non-netted 2 m −0.02 0.254 −0.12 0.220 −0.12 0.267
Difference 0.23 −0.116 0.07 −0.088 0.09 −0.069
Significance of difference *** *** *** *** *** ***
Netted 1 m −0.02 0.072 0.476 −0.04 0.049 0.622 −0.05 0.069 0.486
Non-netted 1 m 0.08 0.083 −0.05 0.069 −0.05 0.105
Difference 0.11 0.011 −0.01 0.019 0.00 0.036
Significance of difference *** ns ** *** ns ***

Table 6
Predictive relationships calculated from the calibration period (1–15 January) based on Eq. (8) to estimate global radiation under netting as a proportion of extraterrestrial
(Rs/Ra), diffuse radiation as a proportion of global (Rdf /Rs) in netted and non-netted environments, and the root mean square error (RMSE) and predictive error of the
relationships in estimating Rs and Rdf between 0700 and 1800 h for the validation period (16–31 January 2013).

Parameter or
coefficient in Eq. (7)

Global radiation as a proportion of extraterrestrial
(Rs/Ra)

Diffuse radiation as a proportion of global radiation
(Rdf /Rs)

Netted Netted Non-netted

Split line regression
e  0.396 0.391
Rdf /Rs at breakpoint 0.830 0.855
No.  of observations 1017 1017
R2 0.918 0.932

Generalised linear model
a  0.049 0.715 0.506
b  0.546 −0.507 −0.391
c  −0.079 1.088 1.515
d  0.400 −1.684 −2.17
No.  of observations 1016 896 896
R2 0.982 0.761 0.754

Overall relationship (validation period)
RMSE (W/m2) 17.1 50.6 71.2
Predictive error (W/m2) 13.1 24.1 35.1

Table 7. On both days between 1610 and 1620 h, netting reduced Io
by 26%.

3.4. Calibration of the model

Without calibration the model consistently over-predicted
Tfs,mx by an average of 6.6 ◦C, but the calculated values were highly
correlated with measurements (R2 = 0.87; data not shown). To cor-
rect this over-prediction, a calibration factor (f) was applied to v
(wind speed), because the relationship between wind speed and
heat transfer to the atmosphere was the least well-defined com-
ponent of the model. The model was first fitted to v measured at
3 m height at each site within the orchard. This achieved minimum
RMSE’s of 2.1 and 2.6 ◦C (Fig. 6a) for netted and non-netted orchards
respectively. Secondly, the model was fitted to measurements of v
measured at a height of 2 m external to the orchard, which achieved
slightly lower RMSE’s (2.0 and 2.3 ◦C respectively), and optimised

at the same calibration factor for both the netted and non-netted
orchards (Fig. 6b). Since the second option fitted the data more
closely and could be calculated from wind speeds from external
to the orchard, which are more commonly measured than internal
orchard wind speeds, this option was  used for most simulations
reported in this paper.

Measured and simulated Tfr,mx showed close agreement on most
days during the afternoon between 1400 and 1700 h, but before and
after these times there were short term spikes in simulated Tfr,mx

that were not observed in the measured data (Fig. 1). These spikes
occurred before 1000 h and after 1700 h during periods of low wind
speed, high direct solar radiation, and a high angle of incidence of
the sun’s rays (zd > 36◦ from zenith before 1000 h, and zd > 76◦ after
1700 h).

Simulated and measured Tfr,mx were closely matched between
1400 h and 1700 h, when fruit were exposed to direct sunlight
(Fig. 3). However simulated temperatures exceeded measurements
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Fig. 4. Solar radiation on a clear day (11 January 2013) and a cloudy day (17 January 2013), showing calculated extraterrestrial radiation (Ra), global radiation measured above
the  plant canopies of netted (Rs,net ) at netted and non-netted sites (Rs,nnet ), and diffuse radiation (Rdf,net and Rdf,nnet) (a, b). Also shown is the percentage of global radiation
recorded above the plant canopy of the non-netted and netted orchards that was  in the diffuse form (Rdf /Rs), the percentage of global radiation that was transmitted through
the  net (Rs,net/Rs,nnet) (c, d), and the estimated intensity of the solar energy received on a fruit surface perpendicular to the solar beam (I0) (e, f).

in the morning and early evening, when the measured fruit were
shaded.

3.5. Model validation from standard weather data

Since in-orchard weather data are rarely available for long-term
modelling studies, Tfr,mx was also calculated for validation purposes
from standard weather data using the coefficients in Tables 5 and 6
to estimate Tair , Rdf and Rs in the netted orchard. The external
weather station was used for Tair and v, but it was assumed that
global radiation measured above the canopy at the non-netted site
was equivalent to that measured outside the orchard. Using these
surrogates there was only a small increase (0.2–0.6 ◦C) in RMSE rel-
ative to in-orchard weather data (Table 8). This applied to both the
calibration and validation periods.

3.6. Supplementary site

The model was run using weather data from the supplemen-
tary site and compared Tfr,mx measured at this site between 1400
and 1700 h (Fig. 7a) (f = 0.45, optimised for the main site). The
model tended to over-predict early in the data set followed by

under-prediction later, and achieved an overall RMSE of 6.3 ◦C.
Over-prediction occurred on afternoons with low wind speed, and
under-prediction on afternoons of high wind speed, a relationship
that accounted for 67% of variation (data not shown). Optimising
f to this data set reduced the RMSE to 5.7 ◦C (f = 0.33), but there
was still a strong relationship between over-prediction or under-
prediction and wind speed. The closest fit between predicted and
measured was achieved using wind speed data from Tatura, which
achieved an RMSE of 3.8 ◦C (f = 0.92) (Fig. 7b).

3.7. Sensitivity analysis

The sensitivity analysis showed that among plant parameters
Tfr,mx was most strongly affected by �, followed by much smaller
effects of D and ks (Table 9). Among weather parameters Tfr,mx was
most affected by Tair followed by Rs, v and Rdf . The sensitivity analy-
sis was also used to test the impact of the reduction in v associated
with netting and potential offsets. A 25% decrease in v increased
fruit surface temperatures by 2.2 ◦C, but this increase could be off-
set by either a 16% reduction in total radiation or a 58% increase
in the proportion of total radiation in the diffuse form (data not
shown).
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Fig. 5. Air temperature (a, b) and wind speeds (c, d) at the netted and non-netted sites, and at a weather station external to the orchard on 11 and 17 January 2013.

Table 7
Summary of differences between the non-netted and netted environments and external to the orchard close to the time of maximum fruit surface temperature, between
1610  and 1620 on 11 and 17 January 2013. Values are the mean of 1 min  readings.

11 Jan (clear day) 17 Jan (cloudy day)

External Non-netted orchard Netted orchard Difference (%) External Non-netted orchard Netted orchard Difference (%)

Extraterrestrial radiation, Ra

(W/m2)
883 883 883 861 861 861

Total  measured solar radiation,
Rs (W/m2)

679 572 −16 769 652 −15

Diffuse radiation, Rdf (W/m2) 87 114 31 175 187 7
Direct radiation (W/m2) 572 425 −26 592 441 −25
Radiation perpendicular to the

sunlit face of fruit, Io (W/m2)
967 749 −26 971 761 −26

Diffuse radiation relative to
global (%)

13 20 56 23 29 26

Ultraviolet B radiation, UV-B
(W/m2)

1.46 1.00 −31 1.58 1.04 −34

Relative humidity (%) 10 13 15 10 14 14
Wind  speed at 3 m (m/s) 1.6 1.1 −28 1.2 1.3 13
Wind  speed at 2 m (m/s) 2.38 0.9 0.7 −17 2.91 0.7 0.9 37
Wind  speed at 1 m (m/s) 0.6 0.3 −56 0.4 0.2 −39
Fruit  surface temperature (◦C) (◦C) (◦C)
Simulated 49.6 47.2 −2.4 51.6 48.8 −2.8
Measured maximum 52.0 46.7 −5.3 53.1 47.9 −5.2
Measured upper quartile 46.3 44.7 −1.7 48.5 46.0 −2.6
Measured median 45.0 43.7 −1.3 46.5 44.4 −2.2
Measured lower quartile 42.5 41.8 −0.7 45.0 42.7 −2.3
Measured minimum 39.9 39.3 −0.6 41.5 40.1 −1.4
Air  temperature (◦C) 38.7 38.7 38.4 −0.3 40 40.7 40.0 −0.7

4. Discussion

4.1. Fruit damage and yield

A higher fruit yield in the non-netted orchard was  offset by a
much higher percentage of sunburn damage than in the netted

orchard (17 vs 8%), leading to a 2% reduction in the yield of undam-
aged fruit. This difference in yield was not statistically significant
and would require confirmation through studies with a larger sam-
ple size. The 2-fold difference in the percentage of fruit affected by
sunburn was consistent with the difference in the percentage of
monitored fruit that exceeded the sunburn browning threshold of
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Table  8
Root mean square error (◦C) for fruit surface temperature calculated using the optimum value of the calibration factor (f ) for each data set for 3 combinations of weather
data  with and without netting, for the calibration period (9–15 January) and validation period (16–29 January).

Source of weather data Data period

Total radiation Diffuse radiation Air temperature Wind speed f Calibration Validation

RMSE (◦C)
Netted orchard
in-orchard weather station Netted Netted Netted Netted 0.2 2.10 3.55
in-orchard and external weather station Netted Netted Netted External 0.45 2.01 3.10
standard weather data Externala External External External 0.45 2.24 3.43
difference between in-orchard and standard weather data 0.23 0.33
Non-netted orchard
in-orchard weather station Non-netted Non-netted Non-netted Non-netted 0.25 2.60 3.67
in-orchard and external weather station Non-netted Non-netted Non-netted External 0.45 2.27 3.09
standard weather data Externala External External External 0.45 2.88 3.53
difference between in-orchard and standard weather data 0.61 0.44

a The source data for total radiation (Rs) were made above the canopy in the non-netted orchard, and assumed to be equivalent to that measured externally.

Table 9
Sensitivity analysis of predicted fruit surface temperature, calculated from in-orchard weather readings, based on standard weather data values between 1610 and 1620 h
on  17th of January 2013.

Values Change in Tfr,mx (◦C)

Low Standard High Low High

Apple reflectance (�) 0.1 0.4 0.6 6.23◦ −4.19◦

Apple thermal conductivity (ks) (W/m2) 0.28 0.42 0.54 0.83◦ −0.57◦

Fruit diameter (D) (m)  0.049 0.060 0.080 −0.80◦ 0.96◦

Wind speed (v) (m/s) 0.1 1.2 3.4 9.52◦ −6.92◦

Total radiation (Rs) (W/m2) 60 768 1040 −14.61◦ 5.23◦

Diffuse radiation (Rdf ) (W/m2) (Rs held constant) 50 175 580 1.68◦ −5.48◦

Air temperature (Tair ) (◦C) 15.0 40.7 42.0 −25.39◦ 1.26◦

46 ◦C on the hottest day of the study, 17 January 2013 (79 vs 32%).
Monitored fruit were only on the west-facing side of the rows that
would be exposed to the afternoon sun, and were representative
of the half of the apple crop at risk of sun damage. An unexpected
difference was that fruit from the non-netted orchard were smaller
(125 vs 153 g), most likely due to differences in crop load (fruit num-
ber per tree). The Gala variety used in this study is intermediate
in its susceptibility to sunburn relative to other cultivars (Schrader
et al., 2001; Schrader et al., 2008). A more comprehensive sampling
regime during harvest would be required to quantify the effects of
netting on yield and sunburn damage for each cultivar.

4.2. Model performance

The model fitted measured Tfr,mx at both the netted and non-
netted sites with an RMSE of ∼2 ◦C in the calibration period and
∼3 ◦C in the validation period, which is similar to previously
reported models in orchards or vineyards without netting (Evans,
2004; Cola et al., 2009; Li et al., 2014). While a physically-based
model would ideally require no calibration and be based on quan-
tities that are directly measureable, this was not the case here. The
most imprecisely defined process is the transfer of heat from the
fruit surface to the air through a boundary layer of still air adjacent
to the fruit surface. The thickness of this boundary layer (ı) has
never been directly measured, but has either been back-calculated
from heat transfer characteristics, or estimated from measure-
ments of v by semi-empirical relationships (e.g. Cola et al., 2009; Li
et al., 2014). The equations used by Smart and Sinclair (1976) were
based on an experiment of Nobel (1975) in which fruit were heated
by artificial radiation under laminar air flow, and ı inferred from
heat transfer characteristics at various wind speeds. Under field
conditions, turbulent air flow alters these relationships, and Nobel
(1975) recommended empirical modifications suited to vineyards.
However, trellised apple orchards have taller rows of trees, and
would be expected to have greater turbulence relative to horizon-

tal wind flow than vineyards. Although wind flow in the horizontal
plane was measured by anemometers within the orchard, these
data produced a poorer fit to observed fruit surface temperature
than those measured at an exposed site adjacent to the orchard.
Further resolution of the physics of heat transfer from the fruit sur-
face to the air would require sensors such as sonic anemometers,
which measure air flow in 3 dimensions. However for use in a semi-
empirical model it appears Tfr,mx was more strongly related to wind
measurements taken at the more exposed measurement site exter-
nal to the orchard than those taken with cup anemometers close to
the monitored fruit. Likewise at the second site, a closer fit to fruit
temperature measurements was achieved using wind data from an
exposed site 18 km away at Tatura than a relatively sheltered site
close to the orchard. A similar calibration approach was  undertaken
by Cola et al. (2009) in a study of vineyard temperatures in Italy. It
is therefore simpler to calibrate directly between fruit temperature
and v measured by a cup anemometer at a standardised weather
station location.

The model produced short-term “spikes” of high fruit surface
temperature in the morning before 1000 and in the late afternoon
after 1700 h. This occurred during short periods of nearly calm con-
ditions when the model calculated a low value of h in Eq. (2). These
spikes occurred outside the times when sun damage would nor-
mally be expected (1430–1645 h, Schrader et al., 2003), and could
cause spurious results should the model be run on long-term or
automated weather data. To avoid such problems we  suggest the
use of a time-based filter that only utilises Tfr,mx between 1000 and
1700 h for the following reasons. Firstly, the sun angle after 1700 h
(>60◦ from zenith) means most fruit are becoming fully or partially
shaded by leaves, while those fully exposed to the sun’s rays are
unlikely to receive the direct beam of the sun long enough to cause
damage. According to Schrader et al. (2001), sunburn browning
requires exposure to temperatures exceeding the varietal thresh-
old for 30–60 min  for its full development. Secondly, spikes after
1700 h were over-predicted relative to measurements (e.g. Fig. 4).
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Fig. 6. Root mean square error of fruit surface temperature (◦C) during afternoons
(1400–1700 h) between 9 and 15 January 2013 in response to the calibration factor
(f) calculated from wind speed measured (a) within the orchard at a height of 3 m,
and  (b) adjacent to the orchard at a height of 2 m.  Arrows show optimum values.

This could be because the thermocouples were not installed on the
face perpendicular to the sun at this time of day, or because Eq. (2)
overestimates the strength of the solar beam at high solar zenith
angles. Thirdly, UV-B levels are low and likely to cause much less
damage at the same fruit temperature than earlier in the afternoon,
because after 1700 h UV-B levels declined to less than 25% of that at
midday. Morning spikes in simulated Tfr,mx were noted until 1000 h,
after which wind speeds tended to increase and spikes no longer
occurred. Sun damaged apples were observed on the eastern side
of the row, but we were unable to determine the time this damage
occurred because our equipment was installed on the western side
of the row. It is unlikely temperatures above the damage thresholds
would occur prior to 1000 h or after 1700 h without also occurring
between these times. Since predicted Tfr,mx in the early morning or
late afternoon and evening is poorly validated and less likely to be
damaging, we suggest that only values between 1000 and 1700 h
should be used in long term modelling.

It should be noted that these times are in Eastern Australian
Standard Time, and that solar noon at this site occurred at 1230 h
because it is 4.74◦ west of the centre of the time zone. Appropriate
adjustments would need to be made for other sites, such as outlined
by Allen et al. (1998).

The sensitivity analysis showed that among plant parameters �
had the largest effect on Tfr,mx. Most previous studies that reported
� did not indicate how the value was measured. The only source
that reported methods was Merzlyak et al. (2003), who undertook
measurements post-harvest. Across the visible range � averaged
0.35 for dark coloured apples to 0.45 for pale apples. Commercially-
available clay sprays reduce Tfr,mx by increasing �, particularly at

Fig. 7. Supplementary site: measured (blue) and simulated (red and orange) fruit
surface temperature of the hottest face of sun-exposed fruit (Tfr,mx) and orchard air
temperature (green). Simulated Tfr,mx calculated from wind speeds (a) in a clear-
ing  surrounded by orchards and f = 0.45 (optimised to the main site) and (b) at an
exposed site at Tatura and f = 0.92 (optimised to this data set). Simulated temper-
atures are shown in red between 1400 and 1700 h, and orange at other times. (For
interpretation of the references to colour in this figure legend, the reader is referred
to  the web version of this article.)

shorter wavelengths that are more damaging to the skin (Gindaba
and Wand, 2005). In our study we initially used an � value of 0.55,
which resulted in an optimum f value of 0.7, whereas using a more
defensible value of 0.4 resulted in an optimum f value of 0.45. While
in a semi-empirical model an inappropriate value of one parameter
is resolved by a compensating calibration factor, there are risks that
the model performs poorly under conditions that differ from its cal-
ibration because the physical processes are not simulated correctly.
To resolve this area of uncertainty there is need to undertake more
comprehensive measurements of � during fruit development, and
over a wider range of wavelengths.

4.3. Effects of hail netting

Hail netting reduced the fruit temperature by 1.5–3.0 ◦C across
most of the probability distribution, but for the hottest fruit at
each site within the orchard the difference was 4.0 ◦C. The mech-
anism for this effect of netting was by reducing the intensity of
the solar beam by interception and scattering, while allowing good
air flow to enable transfer of heat from the fruit surface to the
air. The netting structure at the study site represented an ideal
design for minimising sun damage because it was  installed high
above the tree canopy and had open sides, minimising interfer-
ence to air circulation within the orchard and air exchange with
the outside. Despite this design, the netted orchard had internal
wind speeds that averaged 22–24% lower than the non-netted site
averaged across all afternoons in January 2013 (Tables 4 and 5). A
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wide range of designs are used commercially, including temporary
nets placed over the trees, retractable netting installed on struc-
tures above the tree canopy, and fixed netting with closed or open
sides (Lolicato, 2011). Some designs could potentially exacerbate
rather than reduce sun damage if wind is substantially reduced. The
sensitivity analysis showed that if netting caused a 25% reduction
in wind speeds, this could, without other changes to the heat bal-
ance, increase fruit temperatures by 2.2 ◦C. To maintain fruit surface
temperatures equivalent to the non-netted orchard would require
either a decrease in total radiation of 16%, or if total radiation is
unchanged the proportion in the diffuse form needs to increase by
58%. Until recently, hail protection has been the primary rationale
for investment in netting, followed by protection from fruit bats
and birds. Where the latter is required, the sides would need to be
closed, but this could reduce internal v leading to increased fruit
temperatures. From principles developed in this study, a design
that uses a more open netting on the sides would minimise these
problems.

While the netting intercepted only 10–11% of Rs at solar noon,
this is not the time maximum protection is required for two rea-
sons. Firstly, the NNW-SSE row orientation and training structure
meant that a high proportion of fruit were shaded by leaves at this
time of the day. Secondly, air and fruit temperatures on hot days
tend to peak in the late afternoon. Our study showed that peak
fruit surface temperatures occurred between 1600 and 1700 h, at
which time netting intercepted and scattered a greater proportion
of Rs than at midday. Protection from radiation at solar noon was
consistent with its 10% shade rating, but at 1620 h when the solar
angle was 52◦ its shading effect was greater (15–20%), and there
was an even greater reduction in radiation perpendicular to the
fruit surface at the hot spot (26%). Excessive shading needs to be
avoided because it reduces the development of red colour in the
fruit (Gindaba and Wand, 2005). The main protection from sun
damage is therefore required between approximately 1600 and
1700 h when netting is over twice as effective in controlling the
surface heating effect of the sun than would be expected from its
shade specifications. For this reason, hail netting with a 10% shade
rating represents a good compromise between protection from hail
and sun damage, while minimising its effects on fruit colour devel-
opment.

Our data are a comprehensive comparison of microclimate with
and without netting. From it we were able to develop equations to
predict the netted microclimate from external measurements, but
these are only directly applicable to the particular design, colour
and weave type at the study site. Predictive equations could be
obtained over a relatively short period (two weeks) through the
use of 10 min  data, which for radiation were based on measured
Rs relative to Ra (as recommended by Spitters et al. (1986)), and
the air mass number as a representation of the sun angle. The
sound physical basis of these equations means the approach should
be applicable to developing relationships for other structures and
weave types from relatively short periods of data. However, the
physical nature of this modelling approach is also a weakness,
because a large amount of weather data must be assembled at
time scales of at least hourly, in addition to site-specific rela-
tionships between wind measurement locations and fruit surface
temperature. The role of this level of modelling is in understanding
processes and quantifying the effects of various netting structures,
which can differ in weave type, colour, height and the presence or
absence of side netting. For many applications, a simpler approach
would be more suitable. For example, Darbyshire et al. (2015) used
data from our study to identify the external air temperature at
which fruit surface temperature exceeded a sunburn browning
threshold in 10% of monitored fruit. This was determined as 37.9 ◦C
with netting and 34.1 ◦C without netting. These thresholds were
then used to assess the benefits of netting in Australia’s apple grow-

ing regions for a range of climate change scenarios (Darbyshire
et al., 2015; Webb et al., 2016). Their findings are, however, spe-
cific to the netting design used in our study, and the approach is
limited in investigating the effects of other management options
such as canopy architecture, row orientation, leaf density and their
interaction with netting design.

Netting was associated with other changes to the agro-
ecological environment, including reduced ETo, higher humidity
and lower wind speeds. Under netting ETo was 13% lower than
at the non-netted site, which would lead to a reduced irrigation
requirement. The combination of higher humidity and lower v is
a potential disbenefit, because it is associated with a longer dura-
tion of leaf wetness (Kim et al., 2002), which in turn leads to a
higher disease risk. The most economically significant disease of
apples is apple scab (Venturia inaequalis),  which is a fungus that for
light infection requires at least 12 h of continuous leaf wetness at
13 ◦C, and longer periods at lower temperatures (Vaillancourt and
Hartman, 2000). The netted environment therefore had a benefit
through a lower irrigation requirement, but there was also a dis-
benefit through a greater risk of fungal diseases that may  require
more frequent control measures.

5. Conclusions

This study found that netting was  able to reduce the median fruit
surface temperatures by 1.5–2.0 ◦C. The mechanism for this effect
of netting was by reducing the intensity of the solar beam by inter-
ception and scattering, while allowing sufficient air flow to enable
transfer of heat from the fruit surface to the air. An adaptation of
a previously published thermodynamic model was  able to account
for these differences with an RMSE of 2–3 ◦C in the afternoon when
sun damage most commonly occurs, but in the morning or early
evening it appeared to over predict fruit temperatures during times
of low wind speed.
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Abstract Climate change impact assessments are predomi-
nantly undertaken for the purpose of informing future adapta-
tion decisions. Often, the complexity of the methodology hin-
ders the actionable outcomes. The approach used here illus-
trates the importance of considering uncertainty in future cli-
mate projections, at the same time providing robust and sim-
ple to interpret information for decision-makers. By quantify-
ing current and future exposure of Royal Gala apple to dam-
aging temperature extremes across ten important pome fruit-
growing locations in Australia, differences in impact to ripen-
ing fruit are highlighted, with, by the end of the twenty-first
century, some locations maintaining no sunburn browning
risk, while others potentially experiencing the risk for the ma-
jority of the January ripening period. Installation of over-tree
netting can reduce the impact of sunburn browning. The ben-
efits from employing this management option varied across
the ten study locations. The two approaches explored to assist
decision-makers assess this information (a) using sunburn
browning risk analogues and (b) through identifying hypo-
thetical sunburn browning risk thresholds, resulted in varying
recommendations for introducing over-tree netting. These rec-
ommendations were location and future time period depen-
dent with some sites showing no benefit for sunburn protec-
tion from nets even by the end of the twenty-first century and
others already deriving benefits from employing this

adaptation option. Potential best and worst cases of sunburn
browning risk and its potential reduction through introduction
of over-tree nets were explored. The range of results presented
highlights the importance of addressing uncertainty in climate
projections that result from different global climate models
and possible future emission pathways.

Keywords Extreme temperature . Sunburn browning .

Netting . Horticulture . Pome fruit . Climate projections

Introduction

The purpose for undertaking most climate change impact
assessments should be to inform adaptation decisions or
prompt action for greenhouse gas mitigation. Many impact
assessments, however, are not solution-focused nor do they
respond to end-user perspectives (Kiem and Austin 2013). In
presenting their results to end-users and decision-makers, the
science community often focuses on exploring and explaining
subjects, such as uncertainties in climate projections, which
can over-complicate the advice. Here, an approach is outlined
that aimed to provide robust yet simple results to enable ac-
tionable decisions while also including the uncertainty in fu-
ture climate projections.

An increase in the occurrence of extreme heat events has
been observed historically in Australia (Alexander et al. 2007;
Trewin and Smalley 2013). The apple industry, which had a
2014–2015 gross value of $AU550 million (ABS 2016), is
particularly vulnerable to these extreme heat events as high air
temperatures and solar radiation exposure cause ‘sunburn
browning’, a brown spot on the sun-exposed side of the fruit,
with affected fruit unmarketable (Schrader et al. 2003a, b;
Thomson et al. 2014; Racsko and Schrader 2012). For example,
a heat wave event in January 2009 in south-east Australia
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resulted in large yield losses due to sun damage, approximated
at between 30 and 70% of the crop (Thomson et al. 2014).
Under anthropogenic climate change, increases in the intensity,
frequency, duration and spatial extent of extreme temperatures
in Australia are expected (Alexander and Arblaster 2009;
CSIRO and BoM 2015; IPCC 2012) potentially increasing
the risk of sunburn damage.

Given this potential risk, many fruit-growing districts in
Australia will likely need to implement adaptation strategies
to minimise potential sun damage (Thomson et al. 2014). One
adaptation option is to use over-tree netting to protect fruit from
extreme conditions (Fig. 1, left). In a recent study, Darbyshire
et al. (2015) determined minimum air temperature thresholds
that can result in sun damage of ‘Royal Gala’ apple in non-
netted and netted orchards. Their assessment employed thermo-
couple sensors under the fruit skin (Fig. 1, right) in combination
with air temperature sensors. They identified air temperature
thresholds of 34.1 and 37.9 °C that correlate to minimum
FST thresholds that can cause sunburn browning in netted
and non-netted orchards, respectively. To evaluate the use of
over-tree netting as an adaptation strategy to reduce the risk of
sun damage, this climate change impact study presents a meth-
od that minimised the potential number of descriptive climate
projections to produce results aimed at informing adaptive ac-
tions. This was evaluated considering the frequency of exceed-
ance of threshold air temperatures now and in future periods for
non-netted and netted orchards. Current (centred on 1995) and
projected threshold exceedance centred on 2030 and 2050,
aligningwith orchardists’ shorter andmid-term planning frame-
works, respectively, was evaluated. In addition, a period centred
on 2090 was assessed to align with long-term strategic
planning.

To address the demand for regionally relevant climate
change information (Kiem and Austin 2013), ten locations im-
portant for pome fruit production in Australia, covering a broad
geographical extent and corresponding range of underlying cli-
mates, were assessed. One significant advantage to studying
multiple locations in an impact assessment is that areas that
experience similar climatic conditions, but which may be sep-
arated in space or time (i.e. with past or future climates), can be
identified, i.e. climate analogues (Whetton et al. 2013). This can
be helpful when considering adaptation strategies to a changing

climate (Hallegatte et al. 2007; Webb et al. 2013), a technique
that will be demonstrated in this study.

For adaptation actions to be effective, comprehensive and
plausible representation of the future climate is required to in-
form the projection results. The recently published Australian
climate change projections are based on the full body of knowl-
edge of the climate system and the most up to date perspective
on how the current climate may change under enhanced green-
house gas concentrations (CSIRO and BoM 2015). These pro-
jections of the future climate were informed by 40 Coupled
Model Intercomparison Project 5 (CMIP5) (Meehl and Bony
2011) global climate models (GCMs), simulating the climate
response to a range of plausible scenarios of how greenhouse
gases and aerosols may change throughout the twenty-first cen-
tury (Van Vuuren et al. 2011), termed Representative
Concentration Pathways (RCPs).

The use of over-tree netting as a climate adaptation option
for Royal Gala apple was used as an example to demonstrate a
method that simplifies complex climate projection information
in a manner that promotes climate adaptation uptake while
retaining scientific robustness. Evaluating the potential benefit
of installing netting to reduce apple sunburn risk is a useful case
study as financial loss can be significant from extreme heat
events and netting is a clear implementable management op-
tion. The method used best-case and worse-case climate sce-
narios for several future time periods to evaluate future sunburn
browning risk with and without the adaptation option of
installing netting. This was applied Australian wide to ten
growing districts to evaluate the adaptation option under future
climates and across various site climate conditions. The results
were interpreted using several different approaches, including
climate analogues and considering different levels of grower
risk aversion.

Materials and methods

Locations and regions assessed in the study

Climate data were selected from ten locations that represent the
main commercial apple-growing regions in Australia. These
were Applethorpe in Queensland, Donnybrook and Manjimup

Fig. 1 A netted ‘Royal Gala’ apple orchard in Shepparton, Victoria (left), Royal Gala apples with evidence of sunburn browning damage (centre) and a
thermocouple sensor placed under the fruit skin of a Royal Gala apple to measure fruit surface temperature (right)
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in Western Australia, Lenswood in South Australia, Batlow and
Young in New South Wales, Tatura and the Yarra Valley in
Victoria and Spreyton and Huonville in Tasmania (Fig. 2).
These locations were in two broad regions identified in a study
by CSIRO and BoM (2015) based on their climate change re-
sponse, denoted as either the Central Slopes or Southern
Australia.

Recent climate projections for Australia were regionalised
according to logical groupings of recent-past climatic condi-
tions, biophysical factors and expected broad patterns of cli-
mate change (CSIRO and BoM 2015). The ten study locations
are contained in two of these regions: Central Slopes and
Southern Australia (Fig. 2). Temperature projection results
from these two regions were used to inform selection of
GCMs for this assessment.

Projection methods

Analyses were conducted using daily maximum temperature
(Tmax) for January, when most sun damage is incurred for
Royal Gala apple, following Darbyshire et al. (2015). It was
important to set the context in this climate change impact as-
sessment by including historical risk, therefore allowing the
change in risk to be investigated. In this study, historical risk
was analysed using a 30-year baseline period centred on 1995
(1981–2010) using gridded (0.05° by 0.05°) daily January
Tmax data obtained from the Australian Water Availability
Project (AWAP) (Jones et al. 2009). Henceforth, this 30-year
historical range is referred to as 1995.

Future daily Tmax conditions were assessed in the study,
with the aim to capture the range of climate projections
resulting from the future range of RCPs and corresponding
range of CMIP5 GCM output. To achieve this, a subset of
RCPs and GCMs were identified and combined to create
‘best-case’ and ‘worse-case’ future climate scenarios. The se-
lection of RCPs, GCMs and the method used to include day-to-
day natural variability is detailed below:

Emission pathways

Two RCPs (Moss et al. 2010; Van Vuuren et al. 2011) were
selected to include the likely future range in emissions.

1. RCP4.5: An intermediate pathway, which represents a
future where carbon dioxide (CO2) emissions peak
around 2040 and strong mitigation of emissions occurs
in the latter half of the century, CO2 concentrations reach
540 ppm by 2100. This scenario is similar to the Special
Report on Emissions Scenarios (SRES) B1 scenario
(Nakićenović and Swart 2000).

2. RCP8.5: A high pathway, which represents a future with
little curbing of emissions, where the CO2 concentration
continues to rapidly rise, reaching 940 ppm by 2100.
Current CO2 concentration analysis indicates that we are
tracking along this trajectory (Peters et al. 2012). This
pathway is similar to the SRES A1FI scenario (Rogelj
et al. 2012).

Fig. 2 Australian pome fruit-
growing locations (black dot) are
shown in context of Australian
states (capital letters; Victoria
abbreviated to Vic.). The regions
defined in CSIRO and BoM
(2015) used for model selection in
this study are Southern Australia
(dark grey) and Central Slopes
(light grey)
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Selecting GCMs

The 40 GCMs available from the CMIP5 were investigated to
select GCMs that best defined the projected range in Tmax for
the two regions (Fig. 2). These were selected by analysing
summer (harvest season) Tmax projections for all 40 GCMs
over three time periods: 2030 (2016–2045), 2050 (2036–
2065) and 2090 (2075–2104) (henceforth referred to as
2030, 2050 and 2090) and the two identified RCPs (40
GCMs for RCP8.5 and 38 GCMs for RCP4.5) using the
Australian Climate Futures approach (Clarke et al. 2011;
Whetton et al. 2012). For each region, this approach
categorised and then ranked projected increases in summer
Tmax GCM output using a multivariate ordering technique
(Kokic et al. 2002). After ranking, only 26 GCMs of the 40
were considered for inclusion in the assessment as the remain-
ing 14 have been found to perform poorly across a number of
metrics for Southern Australia (Moise et al. 2015).

This assessment found that two GCMs, CanESM2 and
MIROC5, best described the range in projected summer
Tmax increases for both the Southern Australian and Central
Slopes regions (Table 1). Across both regions, the CanESM2
model was consistently warmer than the ensemble mean,
while the MIROC5 model was consistently cooler than the
mean. While these GCMs were not always the absolute least
or most warming for each time period and RCP in the defined
regions, across the range of future scenarios being considered,
they represented the range well.

Using these selections of RCPs and GCMs, best-case and
worst-case future scenarios were constructed to capture the
range of climate projection uncertainty. The best-case scenario
was constructed using MIROC5 forced by RCP4.5, and the
worse-case scenario was similarly constructed using
CanESM2 and RCP8.5. As such, reliance on using GCM
names and emission pathway terminology was removed.

Representing natural variability in the projected Tmax time
series

To create future daily Tmax time series, projected average
monthly January Tmax change values centred on 2030,
2050 and 2090 for the best-case and worst-case scenarios
were added to the AWAP observed January daily Tmax time
series (1981 to 2010). To capture the most reliable estimate
of location-specific natural climate variability, the baseline
Tmax time series was contrived to extend for the longest
possible period, 30 years, while remaining centred on
1995 (CSIRO and BoM 2015). In this way, the influence
of decadal shifts that may skew the ‘normal’ climatology,
such as the Australian Millennium drought (Dijk et al.
2013), was minimised. By using this approach, the future
variability in each scenario was the same as the underlying
natural baseline temperature variability.

Assessment of sunburn browning risk

For all locations, the 10th, 50th and 90th percentile of a 30-
year time series of the number of days in January that Tmax
exceeded 34.1 °C (sunburn browning non-netted) and 37.9 °C
(sunburn browning netted) (Darbyshire et al. 2015) were gen-
erated using the baseline (1995) period and each of the future
periods (2030, 2050 and 2090).

The entire plausible range of days exceeding the threshold,
or sunburn browning risk (days), for each future time period,
was captured by incorporating results across the best-case and
worst-case scenarios.

The potential benefit of netting, measured as a reduction in
the number of sunburn browning risk days, was evaluated. To
interpret this reduction in terms of benefit of netting, two risk
cases were identified:

1. Risk-sensitive: Netting was introduced if the maximum
(90th percentile) number of days in a 30-year period
experiencing sunburn browning risk was greater than
20% of days in the month (i.e. 6 days).

2. Risk-tolerant: Netting was introduced if the median (50th
percentile) number of days in a 30-year period experienc-
ing sunburn browning risk was greater than 20% of days
in the month (i.e. 6 days).

Use of ‘sunburn browning risk’ analogues

An alternative method to assist decision-makers regarding the
timing of introduction of over-tree nets is to identify a location
where the threshold was already exceeded, i.e. where over-tree
netting is already employed to minimise sunburn browning
risk. Decision-makers will decide to introduce over-tree nets
once the climate becomes similar, or analogous, to the identi-
fied location. To assist with using this approach, sunburn
browning risk analogues were identified across the ten study
locations for 2030, 2050 and 2090.

To define sunburn browning risk analogues, sunburn brow-
ning risk was categorised and colour coded as in Table 2.

Results

Historical (1981–2010) daily January Tmax ranges for the ten
study locations indicated that Spreyton and Huonville were
the coolest locations, with the warmest locations being
Donnybrook and Young (Fig. 3; also see Fig. 2 map).
Exceedance of non-netted (34.1 °C) and netted (37.9 °C) sun-
burn browning air thresholds for the period 1981–2010 oc-
curred where the boxplot crossed the indicative lines.
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Current and projected sunburn browning risk

The current (1995) and future (2030, 2050 and 2090) medi-
an (10th and 90th percentile in brackets) sunburn browning
risk (days) for non-netted trees at the ten study locations is
described in Table 3. To simplify the results, the range in-
cluded both best-case and worse-case scenarios for each
time period.

The median number of sunburn browning risk days
for the 1995 period varied with location, from no dam-
age at Spreyton, through to 3 days for Lenswood, 7 days
for Donnybrook and 9 days for Young. The maximum
exceedance in any 1 year through this period was 16 days
recorded at Young (in the years 1988, 2003, 2006 and
2009).

For Tatura, a key growing district, median sunburn brow-
ning risk of approximately 9 days was projected by 2030.
This could be up to 16 days in hottest years under a worst-
case scenario, but in coolest years and best-case scenario,
only 3 days would be expected to exceed the sunburn brow-
ning threshold temperature. In contrast under both best-case
and worst-case scenarios and across the natural variability,
Spreyton remained largely risk-free through to 2090
(Table 3).

To compare the sunburn browning risk between locations
and for future time periods, instances with similar median
sunburn browning risk were colour-coded in Table 3. These
shadings indicate sunburn browning risk analogues. For ex-
ample, the current sunburn browning risk at Young (median
of 9 days per month) is expected at Tatura in 2030, while the

current risk at Tatura (6 days per month) is expected at
Lenswood,Manjimup,Batlow and theYarraValley by 2090.

Reduced sunburn browning risk through installation
of over-tree nets

Sunburn browning risk (days) with the installation of over-
tree netting was evaluated (Table 4). With nets in place at
Tatura, the maximum exposure for 2030 was halved to ap-
proximately 8 days for the hottest projected years and a
worse-case projection scenario (16.3 days Table 3 vs.
8.4 days Table 4). By 2090 in Young, where up to 24.9 days
of sunburn browning risk was experienced in the hottest
years and under a worst-case scenario (no nets; Table 3),
sunburn browning risk nearly halved to approximately
14 days with over-tree nets in place (Table 4), which is sim-
ilar to current risk at Young, in the hottest years under a
worst-case scenario, for non-netted trees (Table 3).

The reduction in sunburn browning risk (days) was calcu-
lated by measuring the average difference in exposure with
and without over-tree nets. This is illustrated spatially sepa-
rately for best-case and worst-case future scenarios for 2090
(Fig. 4). Tasmanian locations had little benefit from the in-
stallation of nets with Spreyton indicating 0-day benefit.
Average exposure in Huonville was reduced by approxi-
mately 1 day under the best-case future scenario and up to
2 days under the worst case. For Manjimup, a more than 5-
day (on average) improvementwas realised through applica-
tion of nets (worst case) or approximately 3 to 4 days (on
average, best case). In currently hot areas, such as Young,

Table 1 Projected change in summer Tmax (°C) for Southern Australia and Central Slopes regions (see Fig. 2) for 20-year periods centred on 2030,
2050 and 2090, relative to the the 20-year period centred on 1995, under RCP4.5 and RCP8.5 for CanESM2 andMIROC5 CMIP5 GCMs, compared to
the ensemble mean and standard deviation of 40 (RCP8.5) and 38 (RCP4.5) GCMs

Southern Australia Central Slopes

2030 2050 2090 2030 2050 2090

Both RCPs RCP4.5 RCP8.5 RCP4.5 RCP8.5 Both RCPs RCP4.5 RCP8.5 RCP4.5 RCP8.5

CanESM2 1.2 1.5 2.5 2.2 4.8 0.9 2.0 3.0 2.7 5.4

MIROC5 0.9 1.2 1.4 1.8 2.7 0.5 1.1 1.5 1.9 2.8

Mean 1.0 1.5 1.9 2.0 3.8 1.1 1.6 2.1 2.4 4.1

Standard deviation 0.3 0.4 0.4 0.5 0.9 0.5 0.7 0.7 0.7 0.9

Table 2 Sunburn browning risk (days) for the month (top) and proportion of days in the month (bottom)

≤ 1.6 days 1.7 to 3.1 days 3.2 to 6.2 days 6.3 to 9.3 days 9.4 to 15.5 days ≥ 15.6 days

≤ 5.0 % 5.1 to 10.0 % 10.1 to 20.0 % 20.1 to 30.0 % 30.1 to 50.0 % ≥ 50.1 %

Colour shading corresponds to periods and locations having these sunburn browning risk levels
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nets reduced sunburn browning risk by 8 to 9 days (on aver-
age, best to worst case).

To evaluate potential decisions to install netting, the results
were interpreted for two risk cases:

1. Risk-sensitive option (e.g. maximum sunburn browning
risk (90th percentile) >6 days; Table 3).

2. Risk-tolerant option (e.g. median sunburn browning risk
(50th percentile) >6 days; Table 3).

Depending on the risk case selected, nets were applied at dif-
ferent locations and different time periods as shown in Table 5.
Under the risk-sensitive case, nets were applied at more locations
and earlier. For example, it is only under the risk-sensitive case that
nets were applied in Batlow. A further example at Manjimup
indicated that nets would be installed in 2030 under the risk-
sensitive case and not until 2090 under a risk-tolerant case.
Installation of netting will be beneficial even for the historical
period under either risk case in Young, Donnybrook and Tatura.

Discussion

The disconnect between defendable, credible and legitimate cli-
mate projection information and end-user requirements can act
as a barrier to actionable climate adaptation recommendations
(Kiem and Austin 2013). Indeed, inability to ever fully resolve
uncertainty in climate projections should not restrict decision-
relevant information being provided to inform end-users.

Presentation of context-specific best-case and worst-case
outcomes can remove the barrier between the science and the
end-user, with the decision-maker having robust information
ready for decision implementation. In a critical first step to
simplifying the outcomes of this study, two GCMs representa-
tive of the range of change were selected (Clarke et al. 2011;
Whetton et al. 2012). Further to this, RCP4.5 and RCP8.5 (Van
Vuuren et al. 2011) were used to represent the range of plausi-
ble future emission scenarios. While a lower option (RCP2.6)
was available for modelling, this pathway was not considered
achievable given current global emission policy settings
(Meinshausen et al. 2009; Peters et al. 2012) and was therefore
not assessed. Combining the projection information, scenarios
for the best case, i.e. least-warmingGCM/lowest emission
pathway, and worst case, i.e. most-warmingGCM/highest
emission pathway, were identified and presented. This ensured
that the full profile of climate projections was captured in a
simplified manner without reducing the credibility of the re-
sults or the relevance of potential decision options. In doing so,
a great deal of unnecessary complexity in calculation and pre-
sentation of data and results was avoided (Smith and Chandler
2010) and climate science terminology minimised. This ap-
proach could be applied to other impact analyses using tem-
perature change or extended to studies where both temperature
and rainfall are important, with for instance, best case identi-
fied as least-warming and wettest and worst case most-
warming and driest future scenario.

Note that results need to be interpreted across the range of
the best-case and worse-case scenarios. Employing only one
GCM or RCP in an impact assessment can inadvertently lead
to potentially flawed adaptation decisions. For example, at
Applethorpe by 2090 and under the best-case scenario, a 1.5-
day reduction to sunburn browning risk was achieved from
over-tree netting, perhaps resulting in a decision not to install
nets (see Fig. 4). Under the worst-case scenario, with nearly 6-
day reduction to sunburn browning risk, nets could be consid-
ered useful (Fig. 4). Presenting the range of best-case and
worst-case projections gives end-users the opportunity to make
a better-informed decision by appreciating the range of likely
options.

In this assessment, only some growing locations are at risk
of sunburn browning under current and future climates. For
example, for the Tasmanian locations of Huonville and
Spreyton, sunburn browning risk remains minimal right
through to the end of the century. However, for Young and

Young

Donnybrook

Tatura

Manjimup

Batlow

Applethorpe

Lenswood

Yarra Valley

Huonville

Spreyton

Maximum temperature (1981 - 2010) deg C

40302010

Fig. 3 Boxplot showing daily January maximum temperature (°C) for
1981–2010 for the ten locations in the study (also see Fig. 2 map). The
interquartile range (IQR) of the sample is indicated by the height of the
box, the sample median (the horizontal bar) and 1.5 times IQR (the
whiskers), with outliers (the ‘o’). Tmax thresholds (the horizontal solid
lines) are given for sunburn risk (non-netted) 34.1 °C and sunburn risk
(netted) 37.9 °C
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Tatura, by mid-century, over a third of days in the harvest
month could pose a sunburn browning threat.

Over-tree netting is an effective option for reducing sunburn
browning risk (Smit 2007; Smit et al. 2008; Solomakhin and
Blanke 2010) and was found in this study to notably reduce
sunburn browing risk for most growing districts. Adaptation
planning to determine the time period in which nets could be
introduced to reduce sunburn browning risk was explored. This
can be informed by using analogues of current and future expo-
sure to extreme heat events (Webb et al. 2013). For example, the
exposure to damaging heat events currently experienced in
Tatura is likely to be the same as that projected for Lenswood
by 2050 or Batlow by 2090. The benefit of future investment in
over-tree nets for Lenswood or Batlow can be informed by
looking at current regional netting practises in Tatura.

An alternative approach for informing future adaptation
planning decisions was presented using two hypothetical risk
profiles: a risk-sensitive and a risk-tolerant. Using this ap-
proach, nets would be recommended to be installed at differ-
ent locations at different times through the twenty-first centu-
ry.While this example was informative, individual risk assess-
ment will likely change with appetite for business risk, grower
experience and financial position. A benefit-cost analysis
would assist with this decision-making. An assessment of
the economics of installing nets in the current climate in
Europe, for example, showed that they were not economically
beneficial (Iglesias and Alegre 2006). This would certainly
apply in Tasmania where the cost of netting would exceed
crop loss due to sunburn browning. For other locations, the
benefit-cost ratio would vary and could be estimated both

Table 3 Median (10th to 90th percentile in brackets) sunburn browning risk (days) for ten Australian pome fruit-growing locations for 30-year periods
centred on 1995, 2030, 2050 and 2090

Location 1995 2030 2050 2090

Spreyton 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.3)

Huonville 0.0 (0.0 to 2.0) 1.0 (0.0 to 2.7) 1.0 (0.0 to 2.9) 1.5 (0.0 to 3.2)

Yarra Valley 2.0 (0.0 to 7.7) 4.3 (0.6 to 9.2) 4.6 (0.6 to 9.5) 5.6 (1.3 to 10.5)

Lenswood 3.0 (1.0 to 7.0) 4.5 (1.6 to 9.4) 5.1 (1.8 to 10.2) 6.0 (2.8 to 10.7)

Applethorpe 0.0 (0.0 to 2.0) 0.3 (0.0 to 4.6) 1.0 (0.0 to 5.9) 3.0 (0.0 to 9.7)

Batlow 1.0 (0.0 to 4.0) 2.9 (0.0 to 7.7) 4.1 (0.0 to 9.5) 5.5 (0.3 to 12.6)

Manjimup 2.5 (0.0 to 5.0) 3.9 (0.1 to 7.2) 4.5 (1.1 to 7.7) 6.1 (2.1 to 9.5)

Tatura 6.0 (1.0 to 13.0) 9.4 (3.3 to 16.3) 10.4 (4.5 to 17.7) 13.0 (6.5 to 21.0)

Donnybrook 7.0 (3.0 to 11.0) 8.9 (3.2 to 13.9) 10.3 (4.1 to 15.4) 12.8 (7.1 to 18.4)

Young 9.0 (1.2 to 16.0) 13.3 (2.6 to 20.2) 15.4 (3.8 to 22.7) 17.8 (5.8 to 24.9)

Future sunburn browning risk incorporates potential best-case and worst-case results. Sunburn browning risk categories and colour coding defined in the
Materials and methods section of this publication

Table 4 As for Table 3, with over-tree nets in place

Location 1995 2030 2050 2090

Spreyton 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.0)

Huonville 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.5) 0.0 (0.0 to 1.0) 0.3 (0.0 to 1.3)

Yarra Valley 0.0 (0.0 to 1.9) 0.9 (0.0 to 3.5) 1.3 (0.0 to 4.2) 1.9 (0.0 to 6.1)

Lenswood 1.0 (0.0 to 2.9) 1.5 (0.0 to 4.5) 1.8 (0.3 to 5.2) 2.3 (0.3 to 5.7)

Applethorpe 0.0 (0.0 to 0.0) 0.0 (0.0 to 0.5) 0.0 (0.0 to 1.0) 0.0 (0.0 to 2.0)

Batlow 0.0 (0.0 to 0.0) 0.0 (0.0 to 1.0) 0.1 (0.0 to 2.5) 0.6 (0.0 to 4.0)

Manjimup 0.0 (0.0 to 2.0) 0.0 (0.0 to 2.5) 0.5 (0.0 to 3.0) 1.4 (0.0 to 4.3)

Tatura 2.0 (0.0 to 5.9) 2.8 (0.0 to 8.4) 3.6 (0.3 to 9.4) 5.6 (0.8 to 12.6)

Donnybrook 1.0 (0.0 to 3.0) 2.0 (0.0 to 5.0) 3.0 (0.0 to 5.7) 5.0 (1.0 to 8.2)

Young 2.0 (0.0 to 5.9) 3.9 (0.0 to 9.0) 5.4 (0.5 to 11.5) 7.8 (1.1 to 14.2)
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under current and future climates (not in the scope of this
study).

In further support of over-tree netting for use as an adaptation
measure, several additional benefits to reducing sunburn brow-
ning risk, such as reduced hail damage, irrigation requirement,
incidence of bitter pit and apple scab, decay after cold storage and
fruit fly damage, have been reported (do Amarante et al. 2011).

Negative effects of installing netting have been reported includ-
ing poorer skin colour (pale blush and a more intense green
background colour), higher soluble solid concentration (SSC)
and increased starch. Interestingly, when tasting apple slices of
undamaged and sunburned fruit, sunburned fruit were consistent-
ly rated higher than undamaged fruit due to their higher SSC and
lower tartaric acid concentration (Racsko and Schrader 2012);

Fig. 4 The average reduction of
sunburn browning risk days for
2090 resulting from using over-
tree netting for best-case (top) and
worst-case (bottom) scenarios
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therefore, processed (e.g. apple chips, apple pie, apple juice) or
semi-processed (e.g. fresh cut slices) forms of apple may show
future promise for marketing sunburnt fruit.

There are also community and social barriers and/or incen-
tives that need to be considered when deciding to install nets.
For example, in some regions in Australia (e.g. Yarra Valley),
visual amenity of nets has restricted their introduction, whereas
in other areas (NSW), government financial incentives exist for
growers wishing to install netting (NSW Government 2015).

Other adaptation measures to reduce exposure to sunburn
include evaporative cooling, fruit bagging or particle films
(Gindaba and Wand 2006; Racsko and Schrader 2012). Over-
tree evaporative cooling systems based on pulsing water appli-
cations can reduce sunburn, while also reducing tree transpiration
and irrigation requirements (Green et al. 2012). However, access
to water for this purpose needs to be considered (Evans 2004),
especially for drought-prone areas like Australia. Many physio-
logical and cultural management practises can also influence the
extent of sunburn browning in apples: cultivar susceptibility,
developmental stage of fruit, tree form and training system,
row orientation in the orchard, growth vigour (rootstock, prun-
ing) and water stress (Racsko and Schrader 2012). Acclimation,
by previous exposure to high temperatures within the season, can
also reduce the extent of sunburn damage (Racsko and Schrader
2012).

This study aimed at providing information to assist with cli-
mate adaptation. The approach indicated an increase in the num-
ber of days potentially suitable for the formation of sunburn
browning damage. Use of a threshold assessment linearly
massing ‘potential damage days’ or sunburn browning risk was
appropriate for climate projection application and provided
growers with clear information on potential changes in sunburn
browning risk. Building a more complex model accounting for
all additional aspects (UV, wind speed, humidity, colour, etc.) of

individual fruit incorporating canopy structure modelling could
go part way to estimating damage at particular growing points.
To our knowledge, such models have not been developed.
Furthermore, combining these sorts of fine flux models
(subdaily and very small spatial component) with climate pro-
jection data would be misrepresentative. Climate projection
models are unable to accurately resolve variables such as wind
speed through complex landscapes and still require work in
predicting sequences of weather, such as heat waves.

Apples can respond to high-temperature stress, even at ad-
vanced stages of maturity, by synthesising heat shock proteins,
which likely play an important role in protecting cellular biochem-
ical processes during periods of stress (Ritenour et al. 2001).
Theoretically, summer pruning and leaf thinning should be per-
formed on cool overcast days when the forecast is for cloudy
weather in following days to allow time for heat shock proteins
to accumulate prior to exposure to direct solar radiation. However,
the timing and duration of exposure required to encourage produc-
tion of heat shock proteins are not fully understood. Slow, progres-
sive exposure may allow their protective build-up(Ritenour et al.
2001; Wünsche et al. 2004; Zhang et al. 2003; Ma and Cheng
2004; Edreva 2005). Future strategies may make better practical
use of this knowledge by preparing fruit for sun exposure
(Wünsche et al. 2001; Ritenour et al. 2001).

There are other cultivars, not commercially grown in Australia,
that are more susceptible to sunburn browning. For instance,
‘Cameo’ and ‘Honeycrisp’ were found to sustain damage at
46 °C (Schrader et al. 2003b), lower than that for Gala (47.8 °C,
Schrader et al. 2001). Royal Gala was used in this assessment as
production in Australia is high, with production in 2007/2008 the
third highest behind Cripps Pink and Granny Smith (Australian
Bureau of Statistics 2008).

Other forms of sunburn such as sunburn necrosis, a more se-
vere level of damage, could also be considered using the frame-
work outlined in this study. Identification of air threshold temper-
ature for sunburn necrosis on Royal Gala apple under nets would
need to be evaluated prior to such an analysis and highlights a
topic for further study (Darbyshire et al. 2015). The nature of
extreme heat events, often occurring from less than 1 day to a
few days at most, requires use of special modelling techniques that
are not available directly from GCM output. Projections from
GCMs are commonly produced at a monthly timescale, with daily
output unable to be directly interpreted. To overcome this, different
techniques that can produce locally relevant, synthetic future daily
data can be used. Thesemethods include usingweather generators,
statistical downscaling, the change factor method or dynamical
downscaling. There are pros and cons of these different ap-
proaches, and there is no one best method (CSIRO and BoM
2015;Wilby et al. 2009). In this analysis, the change factormethod
was used to generate a synthetic future daily temperature time
series incorporating a local representation of natural variability
uncertainty (Wilby et al. 2009). This method involved applying
GCM-derived temperature changes to a higher spatial resolution

Table 5 Decision not to install nets (X) or to install nets (✓) for a risk-
sensitive case (maximum sunburn browning risk >6 days; Table 3) (left)
and a risk-tolerant case (median sunburn browning risk >6 days; Table 3)
(right)

Risk-sensitive Risk-tolerant

Location 2030 2050 2090 2030 2050 2090

Spreyton X X X X X X

Huonville X X X X X X

Yarra Valley ✓ ✓ ✓ X X X

Lenswood ✓ ✓ ✓ X X ✓

Applethorpe X X ✓ X X X

Batlow ✓ ✓ ✓ X X X

Manjimup ✓ ✓ ✓ X X ✓

Tatura ✓ ✓ ✓ ✓ ✓ ✓

Donnybrook ✓ ✓ ✓ ✓ ✓ ✓

Young ✓ ✓ ✓ ✓ ✓ ✓

Int J Biometeorol



historical (or baseline) climatology, 0.05° spacing of longitude and
latitude. The projected climatology (with an original spatial reso-
lution of approx. 1.5° (or 150 km) therefore also takes on this finer
resolution. In this way, a synthetic projected temperature climatol-
ogy captures local topographical and coastal climate influences.

One of the limitations with the change factor method is that,
although the resultant scenario incorporates the detail of the sta-
tion records, as well as the average climate change of the speci-
fied GCM grid box, the scaled and the baseline scenarios only
differ in terms of their respectivemeans, maxima andminima; all
other properties of the data, such as the range and distribution,
remain unchanged (Wilby et al. 2004). In support of the method
chosen, this should pose minimal effect, given that for most of
the Australian region, mean temperature change is broadly sim-
ilar in magnitude and direction to extreme temperature change
(CSIRO and BoM 2015). However in the southern coastal re-
gions, the increases in the annual and 1-in-20-year maximums
are a little higher than for the means. This seems consistent with
the effect of hot winds from the interior providing an even greater
temperature contrast to those from across the ocean under the
warmer climates, as examined by Watterson et al. (2008). In
viewing the future exposure for locations in Southern Australia
(Lenswood and Yarra Valley), this potential underestimate
should be acknowledged. It should also be noted that the change
factor method is not advised for producing future rainfall time
series, where in some regions, for example, changes in extreme
rainfall are projected to increase even if mean rainfall is projected
to decrease (CSIRO and BoM 2015).

For this case study, projected changes to extreme temperature
and the efficacy of over-tree netting in diminishing adverse ef-
fects were explored in some detail. In a broader assessment of
climate change impacts on theAustralian apple industry, it would
be naïve to ignore changes to other climate variables given that
these crops are affected directly and indirectly by many climatic
factors. Projections for rainfall, evapotranspiration, drought, fire
and wind are all of interest to the grower and have implications
for future viability of orchards. The importance of these should
not be underestimated in terms of the crop’s vulnerability and
alsowith regards to orchard operational practises, e.g. spraying in
hot conditions. Finally, although often overlooked for agricultural
workers, human health as impacted by exposure to extreme heat
should also be considered (Kjellstrom et al. 2009).

Conclusion

A methodology was outlined to provide action-oriented climate
projection information. The adaptation decision to install over-
tree netting to protect apples against sunburn was used as an
example. The methodology simplified climate projection infor-
mation to a range between best-case and worse-case scenarios.
The results were presented in several ways to assist in decision-
making including colour-coded analogues and a risk profile

approach. For Australia, heterogeneity in the benefit of over-
tree netting was found geographically and into future time pe-
riods. The results highlight areas with little risk, and hence, no
adaptation response is required through to areas at considerable
risk and a significant benefit for the installation of netting. This
approach, focussed on adaptation action founded on a robust
scientific method, can be used as a template for a diverse range
of impact studies to provide climate projection information that is
easily transferrable into adaptation actions.
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Introduction 

Climate predictions for the future include reduced winter chilling, less rainfall and more extreme 

high temperature incidents across the South West of Western Australia (Sudmeyer et al., 2016 and 

Reid 2010).  Over tree netting (hail, shade or bird netting) has been identified as a potential climate 

change adaptation strategy due to the moderating effect of adverse climate conditions (Lolicato 

2011).  Netting reduces solar radiation and therefore a reduction in the amount of sun damaged 

fruit.   The installation of over tree netting is one adaptation to climate change that can reduce the 

impact of browning on apples (Darbyshire et al., 2015).  Protection from hail events can be achieved 

by netting pome fruit orchards enabling the protection of fruit and trees (Middleton and McWaters 

2002).  The Pome fruit industry is already responding with significant investment in netting 

infrastructure despite remaining practical questions on the use of hail netting, particularly in warm 

growing regions, including the effect of different types of netting on temperature, fruit quality and 

yield (Bosco et al., 2014 and Iglesias and Alegre 2006).  The effectiveness of netting as a climate 

change adaptation strategy, in reducing fruit surface temperature under predicted climate change is 

unknown.   

Data collected at the Western Australian netting demonstration site was set up to expand on 

existing studies on the effects of netting on air temperature, relative humidity, wind and solar 

radiation (Middleton and McWaters 2002 and Darbyshire et al., 2015).  The Western Australian 

netting demonstration site aims to compare the effect of different coloured net on fruit yield, quality 

and environmental conditions under black and white net. 

The Western Australian netting demonstration site at Lyster Orchards, Manjimup, was constructed 

in 2013 to demonstrate the benefits of netting under Western Australian conditions.  This 

demonstration site was part of two nationally funded projects; Crossing the Threshold: Adaptation 

tipping points for Australian Fruit Trees funded by Department of Agriculture and Water Resources  

and Understanding Apple and Pear production systems in a changing climate funded by Horticulture 

Innovation Australia.  

The site was set up as demonstration site with one replication of each treatment type; 0.25 hectares 

of black net, 0.25 hectares white net and no net (figure 1). There were 10 random trees monitored 

under each treatment from 2 rows.  

 

Figure 1. Western Australian netting demonstration site at Lyster Matijari Orchard.  



The aim of the project was to demonstrate the value of hail, bird or shade netting as a means to 

improve orchard productivity, in high density production systems. Particular attention was given to 

assessing the impact of netting on fruit quality (sunburn, wind burn and colour).  The effects of black 

and white netting on fruit quality (particularly colour), tree growth and chill accrual in the orchard 

were compared to the no net treatment. 

  



Materials and Methods 

The demonstration site, Lyster’s Matijari Orchard, is located 3km south of Manjimup on the South 

West Highway, Western Australia (34.16oS and 116.07oE).  Half a hectare of a 1.2 ha commercial 

Cripps Pink apple crop  has been covered with 16mm quad netting to provide  full exclusion to birds 

plus shade and hail protection. 

Construction of the netting started in August 2013 and was completed by 28th October 2013. 0.25ha 

of black net provides a 23 percent reduction of both shade and UV radiation while 0.25ha of white 

net provides a 20 percent reduction.  The white and black net area was compared to no net areas.    

The three treatment sites have been monitored from 8th November 2013 through to 29th April 2016.  

The environmental conditions were monitored during this period and the fruit quality and yield for 

two harvest seasons.  Under each treatment 10 monitoring trees were selected 5 in each row (figure 

2).   

A fourth site with ‘Frustar’ net was expected to be constructed after harvest 2014, but was not 

completed during this project.  

The Cripps Pink apple trees, planted in 2004 on a north/south orientation, are on M26 rootstock 

trained on a central axis.  Trees are spaced at 1m with 4m between rows giving a planting density of 

2500 trees per ha.  The soil type includes sandy clay loam with varying gravel content over medium 

clay that starts from between 50 to 70cm depth.  The grower undertook all management of the trees 

during the demonstration period. 

 

 

 

 

 

  

Figure 2. Netting treatment layout at Matijari, 5 trees monitored in each row, 10 trees monitored in each 

block.      

Weather stations were located in the centre of row 4 (black net), 10 (white net) and 16 (no net).  

Measurements taken every minute are averaged and reported each 15 minutes. Weather 

observations measured include; solar radiation, UVB radiation, mid canopy air temperature, relative 

humidity, wind speed and rainfall.   

The light interception was calculated by measuring Photosynthetically Active Radiation (PAR) on a 

clear sky day in March 2014 and February 2015 using a hand held ceptometer. Several 

measurements were taken throughout each section at morning, solar noon and afternoon to 

measure the extent and density of the shade created by the tree.   

Row 17/16 

 
 
Row 11/10     
 
 
Row 5/4 

No net rows 14 to 19 

White net rows 8 to 13 

Black net rows 1 to 7 



Phenology assessments were performed to determine the beginning of green tip and full bloom 

timing. Regular visual assessments (Monday, Wednesday, Friday) were made from just prior to 

budburst until flowering was completed. Assessments were performed on a whole tree basis on only 

spur and terminal buds and spur and terminal flower clusters assessed (axillary buds on one-year-old 

pome fruit shoots were not included in the assessments) for the 10 Cripps Pink monitoring trees 

under black, white and no net treatments.  

Fruit Surface Temperature (FST) was measured using thermocouples inserted into the surface of 10 

Cripps Pink apples.  Sensors were inserted into apples evenly spaced (upper, mid and lower canopy) 

on 4 trees in row 4 (black), 10 (white) and 16 (no net).  Fruit Surface Temperature (FST) readings 

were taken every 15 minutes from end of January until early March over 3 seasons; 2014, 2015 and 

2016.   

Yield assessments were undertaken in 2014 and 2015.  Each of the 10 monitoring trees from the 

black, white and no net treatments were strip pick approximately one week prior to the growers first 

pick.  The number of apples from each tree was recorded then graded according to the Pink LadyTM 

standards then a random sample of 40 was selected.  During the grading process the number of bird 

damage apples and sun damaged apples were recorded from each monitoring tree. The grower bin 

numbers have been recorded to get the commercial pick data from all Cripps Pink rows under the 

black, white and no net treatments. 

From the sample of 40 apples from each of the monitoring trees the colour was assessed using the 

Pink LadyTM Europe Ctifl colour charts (Centre technique interprofessionnel des fruits et legumes 

(Ctifl) Pink LadyTM Eurofru colour charts).  Each apple was given a score for background colour (F1-

F7), a score for blush intensity (R1-R8) and a percentage of blush intensity when the blush was over 

R3. 

The maturity of the apples was tested from a sample of 10 apples randomly selected from the rows 

monitored, from early April until harvest. With the final maturity test completed from the sample of 

40 apples. The maturity tests included starch conversion using the 1-6 scale (Portman and Sutton 

2003), total soluble sugars measured using a refractometer, flesh firmness measuring the pressure 

from each side of the apple using a 11mm plunger and acid titration (McAlpine et al., 1995). 

 

  



Results and Discussion 

Environmental  

A summary of the winter chill conditions during the data collection years was compiled. Flowering 

phenology is influenced by winter chill accumulation, with low chill years due to warm winter 

conditions potentially delaying flowering. Conversely, warmer spring conditions may advance 

flowering timing.  

Winter temperature conditions must be converted into chill portions. For this project, the Dynamic 

chill model was used to calculate chill conditions under each net colour. This model estimates winter 

chill in chill portions and is currently the most robust and reliable chill model available (Luedeling 

2012 and Darbyshire et al., 2016).  Winter chill was calculated from 1st March through until 31st 

August 2014 and 2015 from hourly temperature readings collected in the orchard.   

There is very little difference in chill accumulation under black net, white net or no net area (figure 

3).  The nets do not reduce the amount of chill accumulated as there is minimal impact on the 

temperatures recorded under the black or white net or no net (table 1). 

Use of netting to increase winter chill is unlikely to be an effective adaptation option, however these 

results do show that netting, established for other management outcomes, does not influence 

winter chill accumulation in a meaningful way. 

Table 1.  Mean monthly temperatures (°C) from March to October and total chill portions accumulated from 1st 
March until 31st August under black, white and no net.   

Treatment Season Mar Apr May Jun Jul Aug Sep Oct CP 

Black 2015 17.9 15.1 12 12.7 11.5 11.7 13 16.6 66 

White 2015 17.9 15.1 12.1 12.8 11.7 11.9 12.9 16.6 63 

No Net 2015 17.9 15.2 12 12.6 11.1 11.4 12.6 16.3 66 

Black 2014 18.5 16.2 13.9 11.8 11.1 12.8 13.2 14.7 55 

White 2014 18.6 16.3 13.9 11.8 11.2 12.9 13.2 14.7 54 

No Net 2014 18.7 16.4 14 11.9 11.2 12.9 13.2 14.8 52 

file:///C:/Users/smurphy/Documents/Crossing%20the%20Threshold/Grower%20Data%20products/WA_Phenology%20Grower%20tech%20Report%208042016.docx%23_ENREF_4
file:///C:/Users/smurphy/Documents/Crossing%20the%20Threshold/Grower%20Data%20products/WA_Phenology%20Grower%20tech%20Report%208042016.docx%23_ENREF_4


 
Figure 3.  Chill accumulation under the black net, white net and no net at Matijari in 2014 and 2015. 

Bud break and flowering data was collected from 10 trees under black, white and no net rows.  

Observations were made three times a week from 20 August to 30 October 2014 and 2015 (Parkes 

et al., 2016). Whole tree assessments were made to determine the dates of bud break, occurrence 

of first flower and full bloom and to monitor progression of flowering (table 2). There is minimal 

difference in flowering progression between the netted trees to the no net trees. Rootstock shows a 

greater difference with the MM.106 trees under no net reaching bud break a week before M.26.  All 

trees still came into full bloom at the same time in 2014 (figure 4). 

Table 2. Summary of apple bud break and flowering data for 2014 at Matijari based on whole tree 
assessments. Average dates of bud break (5 percent of buds at green tip or beyond), first flower and full bloom 
(80 percent of individual flowers open) for ten randomly selected trees.  

Cultivar Root 
Stock 

Bud break First Flower Full Bloom 

2014/15     

No Net Cripps Pink M.26 15/9/14 26/9/14 17/10/14 

White Net Cripps Pink M.26 12/9/14 22/9/14 17/10/14 

Black Net Cripps Pink M.26 15/9/14 22/9/14 17/10/14 

No Net Cripps Pink MM.106 8/9/14 15/9/14 17/10/14 

2015/16     

No Net Cripps Pink M.26 18/9/15 25/9/15 15/10/15 

White Net Cripps Pink M.26 16/9/15 25/9/15 15/10/15 

Black Net Cripps Pink M.26 11/9/15 25/9/15 12/10/15 

No Net Cripps Pink MM.106 23/9/15 30/9/15 14/10/15 

 



 

Figure 4. Flowering progression at Matijari for Cripps Pink apples on M26 rootstock under black, white and no 

net.  The first symbol represents green tip, the second first flower and the last full bloom. 

Mean daily temperatures rarely varied more than 0.5 to 1 degree (figure 5). The netting led to small 

increases in minimum temperatures and dampening of maximum temperatures. This action is 

similar to a cloud cover effect which reduces radiant heat loss overnight and reflects a portion of 

incoming daytime radiation reducing maximum temperatures. 

  

 

Figure 5.  Daily maximum (upper), average (centre) and minimum (lower) air temperatures for black, white and 

no net treatments for summer 2016.  

The daily maximum air temperature for the summer autumn months (December – April 2014, 2015 

and 2016) the relationship between the white and no net (figure 6) and black and no net (figure 7) 

show no effect on air temperature.  There is a wide range of air temperatures from 14oC to 37oC 
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over a 5 month period of the growing season that demonstrating there is no effect on air 

temperature.  Under the nets feels cooler as the solar radiation lower. 

 

Figure 6.  The relationship of maximum daily air temperature under no-net (ATno-net) and white net (ATwhite) for 

Summer and Autumn 2014 to 2016. The fitted linear regression (solid line) was described by  ATno-net = 1.004 (± 

0.006) ATwhite - 0.081 (± 0.155); R2 = 0.99, n = 438. 

 

Figure 7.  The relationship of maximum daily air temperature under no-net (ATno-net) and black net (ATblack) for 

summer and autumn 2014 to 2016. The fitted linear regression (solid line) was described by ATno-net = 0.996 (± 

0.006) ATblack + 0.379 (± 0.163); R2 = 0.98, n = 438. 
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The humidity under the white net during summer was highest and lowest in no net block (table 3).  

The effect of high humidity was seen in the pest and disease management under the nets.  In the 

first year after the nets were constructed woolly aphids were extremely bad under the nets there 

was also a high percentage of apples with bitter pit.  European mites attacked under the nets in late 

December 2015, almost defoliating the trees.  With pest and disease outbreaks can be more 

common under netting it is a matter of monitoring more frequently as the conditions under the nets 

are favourable to outbreaks.   

Table 3. Maximum daily relative humidity during summer autumn 2016 

 Black  White  No Net 

Average 92.85 93.46 91.92 

Max 98.44 98.52 97.74 

Min 66.83 67.92 62.84 

SE 0.47 0.40 0.46 

 

Average wind speeds are highest under the black net which is on the eastern side followed by the no 

net which is on the western side (table 4).  The white net is the central block between the black and 

no net treatments.  The average wind speeds measured appear to demonstrate a landscape effect 

where the eastern side open to the easterly winds off the dam and the white net is protected from 

the prevailing winds. The no net treatment is protected from the rest of the block of Fuji and Cripps 

Pink apple trees.  Although the maximum wind speeds come from the prevailing westerly winds.   

Table 4. Average 15 minute wind speed (m/s) May 2015 – April 2016 

 Black White No Net 

Average  1.12 0.64 0.89 

Max  4.97 6.02 7.46 

Min  0 0 0 

SE  0.005 0.004 0.005 

 

The no net area received the highest global radiation (figure 7).  While not exactly the same as the 

specifications, the white net showed a 15 percent reduction and the black net 26 percent reduction 

during January and February 2014 and 2015.  Specifications are only given as a guide to how the nets 

will perform and in this case the black net was close to specification and the white net slightly less.  

A similar trend is followed each summer for global radiation.   



 

Figure 7.  Global radiation measured under the black net, white net and no net rows for summer 2014. 

 

Figure 8.  Global radiation measured under the black net, white net and no net rows for summer 2015. 

 

Figure 9.  Global radiation measured under the black net, white net and no net rows for summer 2016. 
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The effect of the black, white and no nets on the interception of light was measured annually as a 

percentage of total above canopy Photosynthetically Active Radiation (PAR) using a ceptometer. 

Figure 10 shows the black net had a greater reduction in shade compared with the white net and no 

net.  

 

Figure 10.  Average photosynthetic radiation interception (PAR) of sky measured at morning, noon and 

afternoon on March 2014 and February 2015 in the black net, white net and no net rows. 

While measurements reflected shade specification of the net, the reduction in PAR was also 

influenced by tree vigour or vegetative growth.  

The fractional PAR is the light intercepted by the tree canopy. Tree vigour was higher under the 

netted areas than outside the net, as seen in the under canopy readings (figure 11). 
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Figure 11.  Average percentage of fractional photosynthetic radiation interception (fPAR) measured at 

morning, noon and afternoon on 12 March 2014 in the black net, white net and no net rows under tree 

canopy. 

 

Quality 

The fruit quality was a measured through the amount of sun damaged fruit, bird damaged, colour 

development of the background and blush of the apple and maturity of the fruit. Fruit surface 

temperature was used to measure the amount of sunburn browning that could be expected under 

netted conditions. 

Fruit surface temperature (FST) was higher in the no net area particularly during extreme heat 

events in late summer and a higher percentage of sunburnt fruit was observed in the no net rows 

2.5 percent in 2014.  Less than half a percent of the apples were sun damaged that came from the 

black and white net areas, compared to the no net area. 

From the 2014 and 2016 fruit surface temperature (FST) recorded it is reasonable to think that 

amount of solar radiation reaching the fruit surface should influence the FST. The FST was measured 

over the summer 2013-14 season (figure 12) and 2015-16 season (figure 13).  Average FST was lower 

under the white net than the black, even though greater solar radiation was recorded under white 

net.  
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Figure 12.  Fruit surface temperature (FST) and air temperature measured in the black net, white net and no 

net rows at Matijari for February till mid-March 2014. 

The FST recordings from 2015 had some computer programming errors at the weather station and 

have not been presented in this report. 

 

Figure 13.  Fruit surface temperature (FST) and air temperature measured in the black net, white net and no 

net rows at Matijari for February till mid-March 2016. 

In 2016 the highest FST was 59.61 oC in the no net block.  This was just one sensor in the outside 

lower canopy on the western side, sun damage was observed in this apple.  All other sensors in the 

no net treatment were only a few degrees warmer than the black and white net. 

The daily maximum fruit surface temperature for February 2014 and 2016 the relationship between 

the white and no net (figure 14) and black and no net (figure 15) show minimal effect on fruit 

surface temperature.  The range of FST start at 20 oC for minimum daily FST and extend through to a 

maximum of 48 oC with average maximum FST of 48.3 oC for black net, 48.9 oC for white net and 59.6 

oC for the no net over the 2 seasons of recording FST. 
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Figure 14. The relationship of maximum daily fruit surface temperature under no-net (FSTno-net) and white net 

(FSTwhite) for February 2014 and 2016. 

 

Figure 15. The relationship of maximum daily fruit surface temperature under no-net (FSTno-net) and black net 

(FSTblack) for February 2014 and 2016. 

Background colour, blush and maturity all contribute to the marketability and grade assigned to Pink 

LadyTM apples. While the results are presented separately it is important to consider them together. 

In 2015 at the time of strip picking the majority of apples had reached the ideal background colour 

(figure 16).  Seventy eight percent of fruit in the no net and black net blocks were between F3 to F4, 

suitable for optimum for long term storage.   Sixty eight percent of white net apples were between 

F3 to F4 (table 5). 
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Background colour greater than F4 is undesirable for long term storage, as the green background 

begins to move toward yellow the fruit ripens. Twenty two percent of the no net fruit were beyond 

the ideal background storage colour in 2015 and 67 percent in 2014 of no net and 53 percent of the 

white net.  

 

 

 

 

 

Figure 16. Background and blush colour of Cripps Pink apples at time of strip picking 28/4/2015, black net, 

white net and no net random sample for maturity testing. 

Table 5. Background colour, percentage of apples with F score for background colour, from Ctifl standards for 

Pink LadyTM.  Optimum for long term storage F 3-4.  

  F Score <3 
Immature 

F Score 3 -4 
Optimum for long term 

storage 

F Score >4 
Optimum for fresh market 

to over ripe 

2014    

Black 6 93 1 

White 5 42 53 

No Net 2 31 67 

2015    

Black 0 78 22 

White 0 68 32 

No Net 0 78 22 

While optimum blush is between R4 and R5 for long term storage, blush greater than R4 is preferred 

in all fruit. The no net treatment had better blush colour development with majority of apples at 

greater than R4 (table 6). 

Table  6.  Blush intensity, percentage of apples with R score for background colour from Ctifl standards for Pink 

LadyTM. Optimum for long term storage F 4-5.  

 R score <4 
Immature 

R Score 4-5 
Optimum for long term 

storage 

R Score >5 
Optimum for fresh market  

2014    

Black 43 29 28 

White 25 38 37 

No Net 26 34 40 

2015    

Black 68 25 7 

White 56 35 9 

No Net 47 42 11 

 

Black Net White Net No Net 



Colour management was required under the nets to ensure the colour and maturity meet at the 

same point. A reflective surface can ensure colour develops with the blush colour meeting market 

standards. 

Maturity tests were undertaken from a sample of 10 apples from each treatment after the strip pick 

(table 7).  The starch conversion guide for the maturity of Pink LadyTM Apples, the 1-6 scoring system 

was used to assess the apples. At picking, starch conversion scores were at 4, optimum for only short 

to medium controlled atmosphere storage (figure 17). The Total Soluble Sugar (TSS) was generally 

lower than the acceptable minimum standard of 13 percent in all areas testing at 11 percent after 

the first strip pick.  The grower did 4 picks of the fruit to harvest the apples at the optimal time of 

maturity and colour meeting enabling sugar percentage to rise to the required 13 percent.  The flesh 

firmness was measured on opposite sides of the apple averaging 8.2kg in 2015 and 8kg in 2014 with 

ideal firmness pressure greater than 6.1kg required.  

Table 7.  Average maturity testing, from the strip pick of a sample of 10 apples from each of the 10 monitoring 

trees. 

Treatment Firmness  
kg 

TSS  
(%) 

Starch 
Index 

Acid 
ml 

2014     

Black 7.3 11.8 4.0 9.0 

White 7.8 12.0 3.9 10.5 

No Net 8.9 11.4 3.5 11.7 

2015     

Black 8.2 10.7 4.1 10.2 

White 8.2 11.4 4.3 8.7 

No Net 8.2 11.0 4.1 8.9 

 

 

 

Figure 17.  Starch test on 28/4/2015 at the time of strip picking. Showing average starch index >4 suitable for 

medium to short term storage. 

 

Black Net 

White Net 

No Net 



 

Yield 

Both the strip picked data from the 10 monitoring trees in each treatment (table 8) and the 

commercial pick data from the remaining trees in the block (table 9) have been included to 

demonstrate the difference in the assessment and importance of working on a commercial property. 

Forty apples were assessed for size and quality from the strip picked trees. 

Encouragingly, average fruit diameters from the strip pick were all very similar between treatments.  

There was a slight difference in average fruit weight, which when multiplied with the difference in 

average number of fruit per tree, contributed to the difference in extrapolated yield per hectare. 

 

Table 8.  Average fruit diameter, weight, fruit per tree and yield of non-damaged fruit based on strip harvest. 

Treatment 
Harvest 

Date 

Average fruit 
diameter 

(mm) 

Standard 
Deviation of 

diameter 

Average 
single fruit 
weight (g) 

Average fruit 
number per 

tree 

Extrapolated 
yield (t/ha) 

2014  
 

 
   

Black 2014 7/5/2014 71.6 0.35 165.6 121.2 71.0 

White 2014 6/5/2014 71.8 0.35 172.6 135.6 74.9 

No Net 2014 30/4/2014 71.6 0.62 172.4 74.2 42.4 

2015  
 

 
   

Black 2015 29/4/2015 71.7 0.58 170.2 155.7 65.3 

White 2015 29/4/2015 72.0 0.61 162.6 143.3 57.4 

No Net 2015 1/5/2015 71.2 0.38 161.0 218.9 90.0 

 

The data from the grower harvest (table 6) based on bins picked from the remaining 390 trees per 

treatment shows a slightly different story.  The commercial yields are lower for black net and no net 

treatment, and higher under the white net. This is largely due to the increased number of trees per 

treatment, averaging out differences in fruit numbers and the staggered picking over several weeks, 

allowing for colour to guide the timing of harvest.  This meant fruit with less blush than desired may 

have increased in size and weight before being picked by the growers, with some fruit left on the 

trees that were already over mature or not considered marketable.   

Table 9.  Grower yield per treatment total tonnes from each treatment.  2013 yield before netting installed. 

Treatment 2013 Harvest 
Date 

2014 Harvest 
Date 

2015 2016 

Black 9.7 21/5/2014 6.3 2/5/2015 8.0  

White 11.3 21/5/2014 7.7 2/5/2015 10.3  

No net 10.3 21/5/2014 7.0 2/5/2015 9.7  

 

The amount of sun damaged apples strip picked was less than 1 percent of the fruit picked from the 

10 monitoring trees.  The black net apples in 2014 had the lowest amount (69 percent) of the fruit 

marketable and had the highest (79 percent) marketable fruit in 2015.  The no net was very stable 



across the two harvests with the white net showing decreases in marketability in 2015 due to shape 

defects and under sized fruit (table 10).  

Table 10.  Percentage of fruit that was marketable, nonmarketable or had sun damage  

Treatment % Marketable % Non-marketable % Sunburn# 

2014    

Black 69.15 30.85 0.101 

White 78 22 0.25 

No net 74 26 2.5 

2015    

Black 78.7 21.3 0.5 

White 70.5 29.5 0.4 

No Net 73.0 27.0 1.0 

# sunburn is a subset of non-marketable fruit. 

In both seasons the damage from birds was minimal with no large losses from birds recorded before 

harvest in the rows under the black, white or no net.  The apples strip picked from the monitoring 

trees had less than 1 percent of the fruit damaged by birds.  There were no hail events during the 

monitoring period and so no damage from hail could be assessed.  Other previous studies from 

Queensland have shown netting to be effective in preventing hail damage (Middleton and McWaters 

2002).  



Conclusions 

Winter chill accumulation was monitored during the three years of the project.  It was found that 

netting black or white had minimal impact on chill accumulation.  This was also reflected in the mean 

monthly temperature which only varied by about half to one degree.  There is a linear relationship 

between the air temperature of the black and white net and again when the nets are compared to 

the no net treatment block.  The impact on chill conditions under the net was also seen in the 

flowering progression which was monitored under the nets in 2014 and 2015.  In both years the 

black, white and no net trees monitored entered into the bud break and reached full bloom on the 

same day or within days of each other. 

The environmental conditions under the nets were very similar although some slight differences can 

be seen in the weather data recorded.  The humidity under the white net during summer was 

highest and lowest in no net block.  The effect of high humidity was seen in the pest and disease 

management under the nets.  In the first year after the nets were constructed woolly aphids were 

extremely bad under the nets and a high percentage of apples had bitter pit.  European mites 

attacked under the nets in late December 2015, almost defoliating the trees.  With pest and disease 

outbreaks more common under netting it is a matter of monitoring more frequently as the 

conditions under the nets are favourable to outbreaks.  Although, pests and diseases are treatable 

they just require prompt management. 

Solar radiation was the highest in no net followed by white and black net. The fruit surface 

temperatures recorded in the apples over the late summer period, were higher in the no net apples 

where the solar radiation was highest.  The average difference between no net and the netted was 

around 3 degrees with the black and white nets only varying by one degree. 

Measuring the amount of shade under the tree canopy it was found that tree vigour influenced the 

Photosynthetically Active Radiation.  Outside the canopy the PAR followed the netting specifications 

rating of the netting black lowest then white and no net. 

The fruit size was very similar in the three treatments, with slight differences in fruit weight and 

number of apples per tree after the strip pick.  The grower yields were highest under the white net 

where the fruit had been allowed to stay longer on the trees.  This was to ensure the apples gained 

more colour.  Initial response in the first year yield was reduced due to bitter pit, woolly aphid and 

colour management. 

Colour management is required under the nets to ensure the colour and maturity meet at the same 

point.  A reflective surface can ensure colour develops with the blush colour meeting market 

standards. 

The netting has proven to be successful at the Western Australia netting demonstration site in; 

 reducing the impact of birds on the fruit 

 reducing the fruit surface temperature   

 with minimal impact on winter chill and flowering progression. 



Table 11. Cripps Pink responses to Black, White and No Net at Western Australian Netting Demonstration Site. 

 Black Net White Net No Net 

Dormancy 
Chill Accumulation No Effect No Effect No Effect 
Flowering Progression No Effect No Effect No Effect 
Environmental data 
Air Temperature No Effect No Effect No Effect 
Fruit Surface Temperature   Highest 
Humidity  Highest Max Lowest Min 
Solar Radiation Lowest  Highest 
Wind average speed Highest Lowest  
Yield and Quality 
Grower Yield Lowest Highest  
Colour Best Background  Best Blush  Best Overall 
Maturity  Highest Sugar Lowest Starch 
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Summary 

The effect of increased temperature on potential yield of early-season apples in northern Victoria 

was investigated using the physiological model MaluSim (Lakso and Johnson 1990). Impacts of 

netting on yield were also investigated using observed data and MaluSim. With a climate change 

scenario of a 2 °C increase in maximum and minimum air temperatures, MaluSim predicted 

increased fruit weights and yields when crop loads were low. However, at higher crop loads, yield 

potential decreased due to greater source limitations resulting from decreased daily photosynthesis 

in response to high temperatures later in the season. Overall, the effects of a 2 °C increase in air 

temperatures on potential yields of Royal Gala apples in northern Victoria were small (+1.3 to -1.6 

t/ha, depending on crop load and presence or absence of netting). Yield potential was higher for 

non-netted trees than netted trees but observed yields were lower for non-netted trees. This 

highlighted the benefits of netting in reducing crop damage and the influence of orchard 

management on actual yield.  

Evaluation of the performance of MaluSim in predicting yield of Royal Gala apples in north Victoria 

supported use of this model for preliminary investigation of climate change impacts on yield. 

However, limitations of use of the model for this purpose were identified and are briefly discussed in 

this report. Additionally, long-term investigation of the impact of elevated CO2 on apple yield is 

required to more accurately predict climate change impacts. A greater understanding of the impact 

of temperature shifts on fruit maturation, colour development and phenology would further 

improve predictions of yield under different climate scenarios. 
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1. Introduction 

Mean temperatures for coastal and inland Australian apple growing regions are predicted to rise by 

0.7-0.9oC and 1-1.2oC, respectively, by 2030 (Putland et al. 2011). Previous research has identified a 

range of potential impacts of predicted climate change on the productivity and profitability of the 

Australian apple and pear industries (Putland et al. 2011; Darbyshire et al. 2013). Climate change has 

the potential to affect potential productivity of pome fruit trees through effects of changing 

environmental conditions on the orchards net carbon exchange (difference between photosynthates 

produced and expended for respiration; Putland et al. 2011 and references within). Netting provides 

a climate adaptive option, particularly for severe weather events such as extreme heat or hail, and is 

increasingly being installed by growers. Industry has made significant investment in netting 

infrastructure despite remaining practical questions on the use of hail netting, particularly in warm 

growing regions. The reduction of solar radiation under netting may influence physiological 

responses to climate change. 

An apple physiological model (MaluSim, Lakso and Johnson 1990) has been used to understand the 

effects of predicted climate change on net carbon exchange of apples and the upper limit of apple 

production (yield potential).  The aims of this study were to: 

- evaluate the model MaluSim with regard to prediction of apple yield under Australian 

conditions;  and 

- predict apple yield in netted and non-netted orchards under warmer climate conditions 

using MaluSim. 

Use of the model ‘MaluSim’ (Lakso and Johnson 1990) to predict apple yield was evaluated in 

2012/13 for Royal Gala apples grown at a site in nothern Victoria. This site was selected as two 

adjacent blocks were netted and non-netted. This provided an opportunity to evaluate MaluSim with 

and without the adaptation option of over-tree netting. Data was collected from 10 trees for both 

netted and non-netted trees and measurements for each of the 10 trees were treated as repeat 

observations. Broader evaluation of the model was conducted by the PICCC project, ‘Crossing the 

threshold: adaptation tipping points for Australian fruit trees’ and reported by Darbyshire and 

McClymont (2016). 

A future climate scenario of a +2 °C increase in maximum and minimum daily temperatures was 

investigated for netted and non-netted orchards and compared to a current season (2012/13). To 

create the future scenario, temperature data from 2012/13 was increased by + 2 °C, 2012/13 solar 

radiation values were unchanged and other tree parameters were standardised based on 

observations or default parameters within the model. Fruit weight predictions were compared to 

predictions based on 2012/13 weather data.  Calculations of cumulative tree photosynthesis, 

respiration and dry weight accumulation, and daily photosynthesis and fruit carbon demand and 

supply were examined to better understand fruit weight and yield responses suggested by the 

model. 
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2. Methods and materials  

2.1 Evaluation of ‘MaluSim’ 

The MaluSim model is a simplified dry matter production model that relies primarily on temperature 

and radiation inputs to predict carbohydrate accumulation (Lakso and Johnson 1990, Lakso 1992, 

Lakso et al. 2001, Lakso et al. 2006). The model is written in STELLA and, consequently, can be easily 

modified by users (Zibordi 2010). It has been shown to behave realistically in a number of apple 

growing regions and in response to factors such as short-term low light (Lakso et al. 2001). The 

model operates on a daily time step at the tree scale and balances carbohydrate supply against 

demand for a ‘standard’ tree. Parameters associated with a ‘standard’ tree (e.g. dates of key 

phenological events, number of fruit per tree, tree spacing, length of growing season, shoot and spur 

numbers) can be modified in the model. Required data are summarised in Table 1.  

Table 1.  Required datasets for MaluSim calibration.  

 Dataset                                

Model inputs  
     Site parameters Tree and row spacing,  

Latitude 

     Weather 
 
 
 

Maximum and minimum daily air temperature,  
Total daily solar radiation 

     Phenology 
 
 

Date of budburst and harvest 
 

     Vegetative growth 
 
 
 

Shoot and spur number or canopy radiation interception 
 
 

     Reproductive sinks Fruit number per tree (at harvest) 
 Model outputs Average fruit fresh weight  

  

 

2.1.1 Study site and collection of required datasets for model evaluation 

Royal Gala apple was selected for evaluation of MaluSim as paired netted and non-netted sites were 

available, allowing investigation of any impact of netting on potential yield.  

The study orchard was a Royal Gala block located at Geoff Thompson’s North Shepparton orchard. 

The selected block was predominantly covered by permanent netting but five rows on the eastern 

side of the block were uncovered. Tree age, variety, rootstock and most management activities did 

not differ between netted and non-netted trees. Data for evaluation of MaluSim were collected 

during the 2012/13 season. 

Table 2 Description of the study site 

Site Season Latitude Longitude 
Tree and Row 
spacing 

Training 
System 

Row 
Orientation 

Shepparton 2012/13 -36.33 145.40 1.5 x 4.8 m Central-leader NNW-SSE 
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Weather stations were located within the netted and non-netted orchard areas to measure daily 

maximum and minimum air temperature (°C; HMP155, Vaisala Oyj, Vantaa, Finland) and daily total 

solar radiation (MJm-2day-1; SPN1, Delta T Devices Ltd, Cambridge, UK). Data were logged (dataTaker 

DT80M, Thermo Fisher Scientific Inc, Yokohama, Japan) from 15 December 2012 at 1 minute 

intervals during January, and at 10 minute intervals at other times of the year. Meteorological data 

between budburst and 15 December 2012 were interpolated from relationships established for 

radiation and temperature over the remainder of the season between a nearby weather station and 

the onsite stations.   

Budburst day-of-year (DOY = 248) was estimated based on date of flowering at the site and date of 

budburst of Gala at a nearby orchard. Fruit number at harvest and canopy radiation interception 

data were collected from 10 trees for both netted and non-netted sites. Measurements for each of 

the 10 trees were treated as repeat observations. Fruit were colour picked over a two week period 

in late-January and early-February. Fruit number and fruit weight were recorded at each pick and 

the mid-date of harvest (31 January 2013) was used as the harvest day-of-year in MaluSim. Light 

interception measurements at full canopy, prior to harvest, for each tree were taken in January 

2013. A ceptometer was used to measure light interception in the morning, at midday and in the 

afternoon. Daily light interception was calculated by averaging the morning, midday and afternoon 

measurements. 

2.1.2 Comparison of observed and predicted fruit weight, 2012/13 season 

Two parameterisations of MaluSim were run for analyses. Firstly, the default MaluSim values were 

used (Netted-Default and NonNetted-Default) and secondly, alternate values for shoot and spur 

numbers were used to adjust the modelled light interception values to be similar to measured values 

(Netted-Light Interception and NonNetted-Light Interception). To set the adjusted shoot and spur 

numbers, MaluSim was rerun for each tree with progressive adjustments to shoot and spur numbers 

(maintaining the ratio of shoots to spurs to match that of the default values) until the predicted light 

interception was within ± 2 % of the observed light interception. For both parameterisations, the 

netted and non-netted data were evaluated independently as well as combined. Use of the default 

maximum fruit growth rate was considered to be a reasonable assumption for an initial investigation 

of model performance as Empire and Royal Gala are both early season apple varieties.  

2.2 Predictions of apple yield under a warmer climate 

A future scenario of a +2 °C increase in maximum and minimum daily temperatures was investigated 

for netted and non-netted orchards by inputting solar radiation data and adjusted air temperature 

data (+ 2 °C) from 2012/13 to MaluSim with other (site, phenology and tree) parameters 

standardised. Site and phenology inputs were unchanged from those used in the initial model 

evaluation (section 2.1). Default shoot and spur numbers (194 and 343, respectively) were used. 

Crop load (fruit number per tree) was varied from 25 to 450 to ensure any lack of response to 

changed climate conditions was not due to sink-limited yield restrictions.  

Fruit weight predictions for 2012/13 were compared with predictions using the  +2 °C scenario.  

Cumulative tree photosynthesis, respiration and dry weight accumulation, and daily photosynthesis 

and fruit carbon demand and supply were examined to better understand fruit weight (yield) 

responses suggested by the model. 
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3. Results  

3.1 Evaluation of ‘MaluSim’ 

The results using default parameters of MaluSim tended to overestimate fruit weight compared with 

observed fruit weight (Figure 1A). Combining both the netted and non-netted results, RMSE was 39 g 

which equates to a 28 % error in estimating mean fruit weight (Table 3).  Using the default 

parameters, the predicted fruit weights for the Netted site were more accurate than those for the 

Non-Netted site, RMSE 14 and 36 g (9 and 29 % of mean fruit weight), respectively (Table 3). 

 

 

 Figure 1 MaluSim predicted and observed mean fruit weight (fresh weight in grams) for netted and non-

netted trees in 2012/2013. A) MaluSim fruit weight predictions using default shoot and spur number inputs. B) 

MaluSIm fruit weight predictions using adjusted shoot and spur numbers. 
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Table 3 Statistics of MaluSim predicted and observed fruit weight at Royal Gala Netted and NonNetted sites 
using default shoot and spur numbers (Default) and adjusted shoot and spur numbers to align light 
interception values in the model with measured values. 

Site Coefficient p-value R2 RMSE (g) 

Netted-Default 0.20 0.47 * 14 

NonNetted-Default 0.05 0.92 * 36 

All-Default 0.13 0.35  39 

Netted-Light Interception* 0.98 <.001 0.46 8 

NonNetted-Light Interception -0.08 0.86 * 21 

All-Light Interception 0.39 0.02 NA 22 

*linear model intercept was not significant, statistics are for analysis omitting the intercept 

The model predictions using parameterised adjustments of shoot and spur numbers were improved 

for both the netted and non-netted trees (Figure 1 and Table 3). For the combined data, RMSE was 

improved to 22 g or 16 % of the mean fruit weight. MaluSim better predicted fruit weight for the 

netted trees with RMSE of 8 g or 5 % of the mean fruit weight. In comparison, predictions for the 

non-netted trees yield RMSE of 21 g or 17 % of mean fruit weight. 

3.2 Predictions of apple yield under a warmer climate 

Potential fruit weight was predicted using MaluSim for two main scenarios: 

1. 2012/13: Measured daily maximum and minimum air temperatures from the 2012/13 

season, with a range of crop loads for netted and non-netted Royal Gala orchards in north 

Victoria.  

2. + 2 °C: Adjusted air temperatures (2012/13 temperatures + 2 °C), with a range of crop loads 

for netted and non-netted Royal Gala orchards in north Victoria.  

3.2.1 Weather inputs  

Total solar radiation was 20 % lower under netting than in the non-netted site. Daily maximum air 

temperature varied slightly between netted and non-netted sites with a tendency on hot days for 

maximum air temperature under netting to be less than the non-netted site. Prior analysis of 

weather data showed that air temperature was similar at netted and non-netted sites (Milestone 

Report 2, McClymont and Goodwin 2013, McClymont et al. 2013).  

Table 4 Summary of measured weather inputs at netted and non-netted sites during the 2012/13 season. Max 

AT = maximum air temperature, Min AT = minimum air temperature, Daily Rad = total daily solar radiation. 

 Netted Non-netted 

 Max AT 
(°C) 

Min AT 
(°C) 

Daily Rad 
(MJm-2day-1) 

Max AT (°C) Min AT 
(°C) 

Daily Rad 
(MJm-2day-1) 

Ave 
 (± st dev) 26.5 (± 6.7) 9.5 (± 4.5) 19.7 (± 6.7) 27.2 (± 6.7) 9.5 (± 4.5) 24.4 (± 8.2) 

Max 41.8 21.3 28.2 42.8 21.4 34.9 

Min 13.0 -0.3 2.7 13.5 -0.3 3.4 
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3.2.2 MaluSim calculation of photosynthesis, respiration and dry matter accumulation 

MaluSim calculates daily photosynthesis based on canopy interception of daily solar radiation with 

adjustments to photosynthetic rate dependent on air temperature (Darbyshire and McClymont 

2016). Over the period from budburst to harvest, similar leaf area and canopy light interception 

were generated by MaluSim for each scenario, with only slight differences between netted and non-

netted sites and no differences for differing crop loads (Table 5). Leaf area development was more 

rapid under the + 2 °C scenario than the 2012/13 scenario (data not shown). 

Table 5 Leaf area and canopy light interception predicted at harvest by MaluSim under 2012/13 (2012/13 

season air temperature data) and + 2 °C (2012/13 season temperatures + 2 °C) scenarios at netted (Net) and 

non-netted (NN) sites. 

Scenario Leaf area (m2) Light interception (%) 
 Net NN Net NN 

2012/13 10.9 11.0 41.9 42.0 
+ 2 °C 11.0 11.0 42.1 42.0 
 

Over the budburst to harvest period, cumulative photosynthesis was effectively unchanged by 

increased air temperatures (+ 2 °C scenario) and was approximately 10 % lower at the netted site 

than the non-netted site (Table 6). However, daily photosynthesis during the first 70 – 75 days of the 

season was greater under the + 2 °C scenario than the 2012/13 scenario (Figure 2). After this time, 

daily photosynthesis tended to be greater under the 2012/13 scenario than the + 2 °C scenario 

(Figure 2). 

Table 6 Photosynthesis, respiration and dry matter accumulation between budburst and harvest predicted by 

MaluSim under 2012/13 (2012/13 season air temperature data) and + 2 °C (2012/13 season temperatures + 2 

°C) scenarios at netted (Net) and non-netted (NN) sites with a range of crop loads. 

 2012/13 + 2 °C 

Crop load  
(fruit/tree) 

Photosynthesis  
(g CO2) 

Respiration  
(g CO2) 

Dry Matter Photosynthesis  
(g CO2) 

Respiration  
(g CO2) 

Dry Matter 

 Net NN Net NN Net NN Net NN Net NN Net NN 

25 

12637 13875 

2220 2291 1805 1846 

12758 13867 

2730 2793 1804 1843 
50 2256 2328 2252 2302 2774 2840 2294 2338 
75 2291 2365 2693 2758 2816 2885 2756 2821 
100 2325 2402 3117 3201 2858 2929 3208 3289 
150 2392 2472 3928 4047 2938 3014 4023 4139 
207* 2462 2549 4707 4882 3020 3104 4751 4937 
250 2510 2601 5162 5403 3073 3163 5111 5371 
300 2557 2655 5525 5846 3126 3221 5396 5708 
350 2597 2702 5775 6157 3169 3272 5562 5923 
450 2659 2776 6039 6506 3237 3352 5759 6182 

*Average number of fruit per tree observed in 2012/2013. 
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Figure 2. Daily photosynthesis (g CO2/day) between budburst and harvest under measured 2012/13 

temperature conditions (2012/13) and with a 2 °C temperature increase (+2 °C) for A) non-netted (NN) and B) 

netted (Net) Royal Gala trees 

MaluSim calculates daily respiration by an exponential relationship dependent on air temperature 

and scaling for the size of plant parts (Darbyshire and McClymont 2016). Over the budburst to 

harvest period, cumulative respiration was approximately 20 % greater in response to increased air 

temperature (+ 2 °C scenario, Table 6). Respiration was slightly lower at the netted site than the 

non-netted site for 2012/13 (3 – 4 % lower, depending on crop load) and + 2 °C (2 – 3 % lower) 

scenarios. Respiration increased with increasing crop load due to increased total respiration by 

greater numbers of fruit. 

Dry matter accumulation is a function of demand of plant parts for photosynthate and supply 

(photosynthesis - respiration). Predictably, dry matter accumulation increased with increasing fruit 

number as more ‘sinks’ were able to utilise produced photosynthates. Similarly, greater 

photosynthate production at non-netted sites (compared to netted sites) enabled greater dry matter 

production, despite slightly higher respiration. Response of dry matter accumulation to increased air 

temperatures varied, depending on crop load. Dry matter production was similar or higher under the 

+ 2 °C scenario when fruit number was 250 or less, and lower when fruit number was 300 or more. 
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3.2.3 MaluSim prediction of fruit weight and daily balance of fruit CO2 supply and demand  

MaluSim partitions dry matter between plant parts (shoots, fruits, wood, and roots). The amount of 

dry matter partitioned to fruits determines fruit weight. Demand by the different plant parts for 

photosynthates varies through the season. For example, demand by shoots for photosynthates 

increases rapidly from the start of season, peaking after approximately one month and then 

decreasing until shoot growth ceases. Whereas fruit demand for photosynthates is low early in the 

season and increases steadily mid-season until a peak potential growth rate is reached prior to 

harvest. Under excess carbon supply circumstances, each growing part is allocated its full demand of 

dry matter. When photosynthate supply is limited, the growing parts compete for resources. The 

“strength” of each growing part to compete differs with shoots the strongest followed by fruit, wood 

and roots. Under limited supply conditions, dry matter allocated to fruit is less than the demand to 

grow at maximum potential.  

For the 2012/13 and +2 °C scenarios, predictions of fruit weight fell as fruit number per tree 

increased (Figure 3A) but yield (fruit weight x fruit number) continued to increase (Figure 3B) over 

the range of modelled crop load (25 to 450 fruit per tree). For crop loads between 25  and 100 fruit 

per tree, there was little change in predicted fruit weight with increasing crop load, suggesting that 

yield was predominantly sink-limited (i.e. potential supply of photosynthate to fruit was greater than 

fruit demand). At higher crop loads (150 fruit per tree and greater), fruit weight began to decline 

steadily, indicating that, at least on some days, fruit growth was source-limited (i.e. supply of 

photosynthate was not meeting fruit demand). Yield began to plateau at a crop load of 

approximately 300 fruit per tree. For both 2012/13 and +2 °C scenarios, predicted fruit weights and 

yields were lower for the netted site than the non-netted (Figure 3). These differences were 

primarily due to decreased radiation under netting, leading to decreased photosynthate production.  

For netted and non-netted sites, MaluSim predicted a slight increase in fruit weight and yield with a 

+2 °C increase in temperature at low crop loads (< 250 fruit per tree, Figure 3). However, at higher 

crop loads, increased temperatures (+2 °C scenario) resulted in reductions in predicted fruit weights 

and yields (for the given crop load, Figure 3) from more respiration. The largest predicted fruit 

weight was 186 g (+2 °C scenario without netting and a crop load of 25 fruit per tree). The smallest 

predicted fruit weight was 100 g (+2 °C scenario under netting with a crop load of 450 fruit per tree). 

The highest yield predicted was 71.3 t/ha (2012/13 scenario without netting and a crop load of 450 

fruit per tree).  
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Figure 3  Predicted A) fruit weight and B) yield under measured 2012/13 temperature conditions (2012/13) 

and with a 2 °C temperature increase (+2 °C) for netted (Net) and non-netted (NN) Royal Gala trees.  

At low crop loads, trees were able to match supply of photosynthates to fruits with demand on most 

days (Figure 4), resulting in high fruit weights. At higher crop loads, supply of photosynthates to 

fruits did not match demand on a greater number of days (due to increases in respiration). Figure 4 

demonstrates how timing of availability of photosynthates and fruit growth patterns could influence 

fruit growth and yield responses to warmer climate scenarios. Fruit demand for photosynthates was 

predicted to be higher under the +2 °C scenario than the 2012/13 scenario. Although total 

production of photosynthates was similar under the +2 °C and 2012/13 scenarios, timing of 

availability differed. More photosynthate was available under the +2 °C scenario (than the 2012/13 

scenario) early in the season, coincident with low fruit demand (Figures 2 and 4). Later in the season 

(when fruit demand for photosynthate was greater), the 2012/13 scenario tended to have more 

photosynthate available (Figures 2 and 4). 
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Figure 4. Effects of increased temperatures and crop load on daily A) fruit demand for photosynthates, B) 

supply of photosynthates to fruit and C) the balance between supply and demand for photosynthates.  
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4. Discussion and Conclusions  

4.1 Evaluation of ‘MaluSim’ 

The predictive ability of MaluSim for Royal Gala was found to be adequate if adjustments to shoot 

and spur numbers, in line with observed light interception values, are made. MaluSim better 

predicted fruit weight for netted compared with non-netted trees. MaluSim tended towards 

overestimating fruit weight for the non-netted trees (points above the line Figure 1). This is more 

likely the result of management intervention than differential model performance between netted 

and non-netted systems.  

Potential causes of the modelled overestimate for the non-netted trees may be due to tree stress 

and/or crop load management. Considering tree stress, evaporative demand, and hence tree water 

requirement, is higher in non-netted orchards than netted orchards. Non-netted trees may have 

suffered transient water stress if either irrigation volume or frequency of irrigation events did not 

match tree water requirements. Noting that the orchard manager did supply more water to the non-

netted trees, it is not clear whether this was sufficient to avoid tree stress.  

Regarding crop load management, the non-netted site was thinned later than the netted site. This 

means that less carbon was available for the early-season growth of retained fruit on the non-netted 

trees compared with the netted trees. This could have contributed to slower fruit growth rates early 

in the season in the non-netted trees than the netted and subsequent lower than predicted fruit 

weight at harvest.  

MaluSim was designed as a model to evaluate potential yield. That is, expected yield assuming ideal 

conditions. Given the model design for potential yield, not field yield, it is reasonable to expect the 

model will have a tendency to overestimate fruit weight in many commercial orchard situations. 

Furthermore, evaluation of the performance of MaluSim needs to consider possible measurement 

errors (i.e. errors in model inputs and observed parameters), use of the model outside the range of 

parameters for which it was constructed, and failure of observations to meet particular model 

assumptions. At a practical level, the programing language used for MaluSim (Stella), limits use of 

MaluSim for investigation of potential climate impacts. Ideally, such investigations would involve 

modelling many iterations of simulated weather data to account for natural variability in climate and 

use of multiple climate change models. At present, MaluSim requires the user to ‘run’ each scenario 

individually and manually extract data summaries, making such detailed investigations impractical. 

These issues are discussed in greater detail by Darbyshire and McClymont (2016), who concluded 

that positive validation of MaluSim under Australian conditions was not achieved, based on poor 

prediction of yield by MaluSim for Royal Gala and Cripps Pink at multiple sites in Australia. However, 

performance of MaluSim in predicting fruit weight of Royal Gala trees at the North Shepparton site, 

with adjustment for light interception and consideration of environment and management impacts, 

supported use of the model for preliminary investigation of influences of climate change on 

potential yield.   
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4.2 Predictions of apple yield under a warmer climate 

The following points consider the main findings of modelling potential yield under a warmer climate 

and factors that could modulate yield response or improve model performance are discussed. 

- The predicted impact of increased temperatures (+ 2 °C) on yield was minor under the 

conditions modelled in this investigation (-1.6 to +1.3 t/ha) dependent on crop load and 

presence or absence of netting).  

- Given that growers are most likely operating in the medium to high crop load range, yield of 

Royal Gala apples in north Victoria would be expected to remain unchanged or fall slightly 

under a warmer climate. This outcome is similar to that projected by Stockle et al. (2010) for 

apples grown in Washington State, USA. Although the response predicted by Stockle et al. 

appeared to be based on earlier harvest date. Whereas yield loss in our modelling resulted 

from source limitations during the fruit growth period.  

- Yield could be maintained by increasing crop load. However, at high crop loads, additional 

yield loss may occur due to increased downgrading or cullage of small fruit as average fruit 

weight falls. Avoidance of such additional losses would require either adjustment of market 

expectations regarding fruit size or improved crop management to decrease variability in 

fruit size. 

- Predicted yields were lower under netting than without netting. Observed yields did not 

support this finding and in the medium to long-term, netting would offer greater yield 

potential because of decreased occurrence of sunburn and hail damage. It is noted that, 

netting reduced solar radiation by approximately 20 % at the north Shepparton site. 

Modelling a greater reduction in solar radiation (30 %) lowered the crop load at which fruit 

weight and yield began to fall in response to increased air temperatures (data not shown). 

- The modelling undertaken in this investigation assumed no changes to budburst or harvest 

date with increased temperatures. Darbyshire et al. (2016) reported that that most pome 

fruit growing regions in Australia will have similar flowering phenology timing for 2030 whilst 

progressive delays are expected for 2050 and 2090. Maturity and harvest could occur earlier 

(Warrington et al. 1999, Stockle et al. 2010) or later (Iglesias et al. 2002) under a warmer 

climate, with associated decreases or increases in yield potential, and any shift will be 

influenced by both physiological impacts of higher temperatures and market expectations 

regarding fruit maturity and colour. Colour development would most likely be impaired by 

higher temperatures (Faragher 1983, Iglesias et al. 2000, 2002).  

- This investigation focussed on the period from budburst to harvest. Later season effects, 

including timing of leaf fall, should be considered. Accumulation of reserves during the 

period from harvest to leaf fall will affect tree performance in the following season (Greer et 

al. 2002).  

- Royal Gala is an early season variety and is picked in late January. Late season varieties may 

experience greater negative impacts of increased temperatures on accumulation of 

photosynthates during the fruit growth period and, subsequently, yield.  

- A uniform increase in air temperature is unlikely across the season. Use of a climate model 

that predicts within season variation in temperatures could further emphasise disparities 

between photosynthate supply and demand at particular growth stages.     

- The modelling undertaken in this investigation did not consider possible effects of elevated 

atmospheric carbon dioxide (CO2) concentrations. To include this aspect, greater 
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understanding of apple tree functioning under both higher CO2 levels and higher 

temperatures need to be understood. Stockle et al. (2010) estimated changes in apple yield 

under future climate change with and without an enhancing effect of CO2. Without an 

enhancing effect of CO2, apple yields were projected to fall slightly. Increases in yield were 

expected when increased CO2 was incorporated in modelling. However, notably they 

commented that “projections for apples are more uncertain as tree fruit models are less 

developed and previous studies are not available”.  
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Understanding apples and pears in a changing climate: overview 

of the grower workshops  
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Grower Workshops  2013 

Three technical working group meetings were conducted during August (Queensland), 

September (South Australia) and October (Victoria), involving 32 growers, industry 

representatives and service providers. The purpose of the technical working groups was to 

present relevant local research outcomes as well as identifying gaps in growers’ knowledge 

around climate change that could be addressed at a later date.  

 

The technical working group locations and members were identified using input from DAFWA, 

DAFF QLD, DEPI VIC, Lenswood Co-op and APAL; South Australia was suggested by APAL.  

Each technical working group was based on an already existing group, and the meetings 

scheduled to coincide with other meetings to gain maximum feedback and avoid meeting 

fatigue and poor attendance. 

Format and information provided was tailored to the specific needs of the group based on 

input from local industry development officers, APAL and the research organisations involved.  

The Queensland working group session was structured around a presentation of the current 

project as well as a questionnaire and the South Australian and Victorian sessions started 

with an interactive presentation about chill, and, in the case of Victoria, fruit temperature, 

followed by a 60-90 minute facilitated Q&A session. 

 

Outcomes from the workshops varied depending on the location: 

- The Queensland workshop discussions focussed on the impact of extreme weather, with 

most growers agreeing that climate change and climate variability impacted on their 

orchards; lack of rain, rain at the wrong time, erratic bloom, poor colour development 

and hail damage all scored highly in the survey. 

- In South Australia the discussions centred on inconsistency in the reporting of chill; 

depending on the model used, chill hours, chill units or chill portions.  The lack of 

conversion factors was mentioned.  Only the dynamic model, which uses chill portions, 

predicted a high chill season based on local data.  This was consistent with the short 

intensive flowering observed.  Post-session feedback was positive with suggestions made 

to repeat the working group next year, albeit to a larger audience as part of the national 

workshop series. 

- In Victoria discussions also focussed on chilling models and temperature thresholds that 

lead to heat-related fruit damage in the Goulburn Valley.  Again, informal feedback was 
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positive with the suggestion made to communicate more results as they become 

available through emails or workshops. 

  
 

Grower workshops 2014 

Three workshops for apple and pear producers were conducted in production regions in 

collaboration with apple and pear growers’ organisations during May (Victoria), July 

(Queensland) and September (Western Australia).  Nearly 50 producers, industry 

representatives and service providers participated.  The purpose of the workshops was to 

present an outline of the project, to present relevant local research outcomes and to review 

the last season to identify production trends and issues, share lessons learnt and identify 

future trends and issues. 

Nearly 50 producers, industry representatives and service providers participated in this round 

of workshops.  The purpose of these workshops was to present research outcomes from the 

first three years of the project such as the modelled predictions for the regions and relevant 

local climate change impacts as well as adaptation strategies, and to seek feedback on the 

past season, perceived climate change risks and the project itself.  Each interactive workshop 

was tailored to the individual needs of the three targeted groups through either general 

presentations on climate change research, intensive training in the Climate Change Risk 

Management Matrix, and/or site specific presentations on modelled chill requirements and 

heat damage projections. 

Additionally, in order to reach a much wider pome fruit audience, project outcomes were 

highlighted at the 2015 National Horticulture Convention of APAL and AUSVEG, where team 

members across all participating research organisations were present at the Horticulture 

Centre of Excellence stand to answer growers’ questions and get feedback on the project.  

 Grower workshops 2015 

Three workshops were held in apple and pear production regions to communicate up-to-date 

research outcomes such as the model predictions from the last three years to industry in a 

consistent manner as well as gathering information about the past season, perceived climate 

change risks and feedback on the project to 48 growers. 

Each workshop was held in conjunction with, or as part of, an industry forum/meeting/tour to 

attract as many growers as possible and to avoid meeting fatigue.   

The workshops were held in Applethorpe (QLD) in conjunction with the Perth Hills Orchard 

Improvement Group during their QLD study tour in July; as a stand-alone Climate Change 

Risk Management Matrix session with QLD growers in Applethorpe in July; and a climate 

change workshop in Bilpin (NSW) in September. 
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Seventeen growers from the Perth Hills Orchard Improvement Group visited the Applethorpe 

Research Station as part of their QLD study tour.  As the central part of their half day tour of 

the research station, a climate change workshop event was held to discuss some of the 

outcomes from current research and, in particular, some of the issues facing the growers in the 

Perth Hills district. This region was not part of the WA grower workshop event held in Manjimup 

in 2014.  

During the workshop, presentations were made by Heidi Parkes, Peter Nimmo and Allan 

McWaters about the climate change research project currently underway including the modelled 

predictions, management of QFF (one concern under a changed climate) and new apple 

varieties better suited to different disease and climate pressures. 

The Climate Change Risk Management Matrix is a tool developed by DAF QLD to address 

uncertainty by identifying the impacts, risk and vulnerability associated with climate change 

and adaptive responses.  Identifying and analysing risks and opportunities, using this risk 

management approach, can help to plan responses to climate variability and climate change 

and thus enable growers to be proactive and more effective in adapting to future uncertainty.  

This tool has been adapted to be used not only in grains and meat and wool production but 

also in horticulture. 

As New South Wales has not been included in former National Roadshow tours and based on 

interest shown from the Sydney Basin area, Kevin Dodds from NSW DPI and an interested 

grower in Bilpin, Bill Shields were contacted and a workshop organised.  The interactive 

workshop on a grower’s property with about 25 participants entailed a tailored winter chill 

presentation by Rebecca Darbyshire (The University of Melbourne), introduction to climate 

change impacts on pome fruit, and research outcomes from the project such as the latest 

dormancy breaker research from QLD by Heidi Parkes as well as modelled predictions for the 

region plus a field walk.  The session was organised, facilitated and evaluated by Kevin Dodds 

(NSW DPI) and Jenny Treeby (DEDJTR, VIC).  In the evaluation, growers pinpointed earlier 

bud burst, flowering and maturity as well as sunburn as their main climate change related 

challenges.  The workshop gave them a better understanding of the complexity of factors 

involved in budburst and flowering and the chill portions calculator was seen as an excellent 

tool/incentive to collect and utilise their own data better. 

In order to reach a much wider pome fruit audience, project outcomes were displayed at the 

Horticulture Centre of Excellence stand at the 2015 National Horticulture Convention.  A 

poster, six state specific chill fliers using the chill portions model, the HIN (www.hin.com.au) 

project webpage, and the chill calculator were used as a static display.  Additionally, time was 

made to meet the project researchers at the stand during program breaks, an option which 

was taken up by quite a few growers who felt that this was a great opportunity to have a 

chat with a scientist. 

http://www.hin.com.au/
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Lessons learnt 

1. Having a core team responsible for communication (Heidi Parkes, DAF QLD), Susie 

Murphy-White (DAFF WA), Rebecca Darbyshire (UoM) and Jenny Treeby (DEDJTR 

VIC) ensured timely, relevant and consistent information was being made available to 

growers at the workshops and the APAL conference.  This also emphasised a multi-

state approach (including New South Wales) and added importance to the project 

outputs and resulted in messages such as in New South Wales, where the presenters 

were thanked for their presentations and the effort made to come to that location.   

2. Presenting locally relevant data, using model predictions established within the 

projects by researchers resulted in the grower audience being engaged and feeling 

confident to ask questions and provide feedback and lessons learnt in their orchard. 

3. Utilising well established grower groups such as in Queensland and New South Wales 

as well as local, well respected extension officers (Front Line Advisors) such as Clinton 

McGrath (DAF QLD) and Kevin Dodds (NSW DPI) ensured ease of facilitation. 

4. Evaluation of workshops is still suffering from low return rates of around 50% of even 

short evaluation forms possibly due to a lack of understanding of the importance of 

this form of feedback.  Interactive keypad technology as employed in the last round 

seems to have had a better return rate (possibly due to novelty factor) and will be 

contemplated for further projects. 

5. Knowledge gaps identified as a result of these workshops include: 

 varietal chill requirements for existing and new varieties 

 lack of understanding of the difference between chill hours, units and portions, 

and the use of chill portions as the most accurate measure of winter chill available 

 adaptation strategies to heat stress  

 does soil temperature influence endo and /or ecto dormancy? 

 do phenology models based on meteorological data adequately represent buds 

within a tree? 

 is the current knowledge of pome fruit physiology extensive enough to be able to 

accurately predict winter chill accumulation processes? 

 there is a strong focus on the potential impact of extreme events on the industry 

under future climate scenarios, with less understanding about the potential 

impacts of more subtle increases in temperature 

 need for more accurate in-season and longer term climate forecasting to enable 

growers to take actions that reduce climate risk  

 

Resources:  

http://www.hin.com.au/projects/apple-and-pear-production-in-a-changing-climate 

http://www.hin.com.au/projects/apple-and-pear-production-in-a-changing-climate
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http://www.hin.com.au/projects/winter-chill-and-fruit-trees 

regional-chill-accumulation-victoria 

regional-chill-accumulation-queensland 

regional-chill-accumulation-for-new-south-wales 

regional-chill-accumulation-for-south-australia 

regional-chill-accumulation-for-tasmania 

regional-chill-accumulation-for-western-australia 

 

Blogs: 

http://www.hin.com.au/projects/apple-and-pear-production-in-a-changing-climate/explore-

your-regional-climate..... 

 

 

 

 

http://www.hin.com.au/projects/winter-chill-and-fruit-trees
http://www.hin.com.au/resources/regional-chill-accumulation-victoria
http://www.hin.com.au/resources/regional-chill-accumulation-queensland
http://www.hin.com.au/resources/regional-chill-accumulation-for-new-south-wales
http://www.hin.com.au/resources/regional-chill-accumulation-for-south-australia
http://www.hin.com.au/resources/regional-chill-accumulation-for-tasmania
http://www.hin.com.au/resources/regional-chill-accumulation-for-western-australia
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