

An integrated pest and disease management extension program for the olive industry (OL17001)

Hort OLIVE FUND

Strategic levy investment

This project has been funded by Hort Innovation using the olive research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit horticulture.com.au

PROJECT ACTIVITIES

- WP1. Collate and analyse existing information on olive IPDM, with particular reference to Black Scale, OLB and Anthracnose (Year 1)
- Major Literature Surveys,
- Survey of Australian olive growers
- Follow-up survey Year 3
- WP2. Workshops/field days (Years 1 and 2)
- IPDM Workshops (9): Covering principles and practices of IPDM; monitoring, biology/ecology/life cycles of Black Scale, Olive Lace Bug, and Anthracnose (with a local focus); conventional and organic management
- Master Classes (2): for consultants, pest monitoring scouts in large groves etc.

WP3. IPDM extension/communications platform for the industry (Years 2 and 3)

- revised Pest and Disease Field Guide
- best practice IPDM manual.
- web-based tutorials
- flyers on IPDM and the three target species

INTEGRATED PEST & DISEASE MANAGEMENT FOR AUSTRALIAN OLIVES

Robert Spooner-Hart & Len Tesoriero

CHARACTERISTICS OF NATURAL ECOSYSTEMS

- Require low levels of inputs
- Have high levels of diversity
- Have a complex series of interactions
- Are highly stable
- Are not highly productive in yield/unit area

CHARACTERISTICS OF NATURAL ECOSYSTEMS

- Require low levels of inputs
- Have high levels of diversity
- Have a complex series of interactions
- Are highly stable
- Are not highly productive in yield/unit area

BIODIVERSITY OF ORGANISMS IN A NATURAL ECOSYSTEM

CROP PLANTS/FARM

HERBIVOROUS ANIMALS (inc. insects) HERBIVOROUS MICROORGANISMS/ PATHOGENS

NON-CROP PLANTS

PESTS	DISEASES	WEEDS
-------	----------	-------

BIODIVERSITY OF ORGANISMS IN A NATURAL ECOSYSTEM

CROP PLANTS/FARM

HYPERPARASITES

PREDATORS

PARASITOIDS AND PARASITES

PATHOGENS

HERBIVOROUS ANIMALS (inc. insects) HERBIVOROUS MICROORGANISMS/ PATHOGENS

NON-CROP PLANTS

PLANTS

BIODIVERSITY OF ORGANISMS IN A NATURAL ECOSYSTEM

CROP PLANTS/FARM

PRODUCTIVE ECOSYSTEMS

- Are more productive or useful
- **Require higher levels of inputs**
- Have limited diversity
- Have reduced series of interactions
- Are unstable
- Are unsustainable, unless continuously supported

<u>A PEST / PATHOGEN IS...</u>

" ANY UNWANTED ORGANISM WITHIN A PARTICULAR SITUATION"

IT MAY BE:

- A new species or strain (including a more virulent strain)
- Native species attacking new crop
- Naturalised species attacking a new crop

[&]quot;Trapped like rodentia!"

Exotic species (often without natural controls)

An induced species responding to changed environmental conditions (e.g. monoculture, irrigation and fertilisers, "improved" crop varieties, pesticide use and other pest control measures, climate change)

FOR PESTS OR DISEASES TO CAUSE PROBLEMS IN A GROVE, THE FOLLOWING ARE ALL REQUIRED

FOR PESTS OR DISEASES TO CAUSE PROBLEMS IN A GROVE, THE FOLLOWING ARE ALL REQUIRED

- **1. A susceptible host** (including a cultivar, in a susceptible condition of health)
- **2. A suitable environment**, including abiotic and biotic conditions in the grove, including the soil

FOR PESTS OR DISEASES TO CAUSE PROBLEMS IN A GROVE, THE FOLLOWING ARE ALL REQUIRED

- **1. A susceptible host** (including a cultivar, in a susceptible condition of health)
- **2. A suitable environment**, including abiotic and biotic conditions in the grove, including the soil
- 3. The presence of a virulent strain of pest or pathogen at a sufficient population pressure

INTEGRATED PEST AND DISEASE MANAGEMENT (IPDM)

A commonsense approach where all methods of

- control: resistant varieties, planting and harvest time, conservation and manipulation of
- natural enemies and biological control are
- all brought into operation in a systemic way
- to keep pest/pathogen populations and related
 - damage at low levels, with pesticides applied only
- where absolutely necessary, and in such a way as to interfere least with non-chemical methods

IPDM HAS THE FOLLOWING CHARACTERISTICS

- Based on ecological principles
- Requires correct identification of damage & causal agents
- Continuous monitoring of crop health, weather, potential pests/diseases and their damage, as well as their natural enemies, including after application of any treatments
- Setting thresholds of pests/disease and/or damage at which action is to take place (this can be difficult)
- Integrating a number of strategies in a systemic way
- Intervening with selected chemicals only when appropriate, and then with appropriate timing and coverage

MONITORING

most important component of IPDM

growers, trained employees or pest scouts visual observations in person or by remote (e.g. drone)

based on sampling, assessment of pests, diseases and/or damage

Monitor grove (or block in large groves) at least monthly during the growing season. Monitor priority blocks more frequently

Divide large blocks into sub-blocks. Select several rows within each sub-block. Sample different rows/trees each time, and include more detailed tree inspection

Examine individual trees from all sides and at all heights using a systematic approach

Inspect samples of leaves, twigs, flowers and fruit for the presence of pests, diseases or damage and their stage(s) of development using a 10x hand lens or magnifying glass

If pest or disease is detected, check surrounding trees in the row and adjacent rows to establish the extent of the infestation

Monitoring after an intervention (such as pesticide application) will demonstrate its level of success

STRATEGY 1. CULTURAL MANAGEMENT

- Maintain good plant health (irrigation, nutrition)
- Hygiene, plant sanitatio quarantine, biosecurity
- Control alternative hosts for pests and diseases
 - Change environment to less favour pests and pathogens Mummified fruit, source of anthracnose pathogen (Sergeeva, Spooner-Hart & Nair 2008) (e.g. improved tree training systems, open canopy for air/sunlight and spray coverage, selected cover crops)
- Change management practices (harvest times, varieties, pruning practices) to minimise pests and diseases and their spread

STRATEGY 2. BIOLOGICAL CONTROL

Use of natural enemies such as predators, parasitoids and pathogens, competitors

Broadly, three forms biological control:

- Classical
- Augmentative/inundative and

www.goodbugs.org.au

Conservation

STRATEGY 3. PHYSICAL AND MECHANICAL CONTROL

e.g. Use of mechanical devices and barriers (e.g. birds, roos, weevils)

Traps

Monitoring or management

Tree barrier to prevent garden weevil movement up olive tree

STRATEGY 4. USE OF SELECTED PESTICIDES

- Natural or organic pesticides (not always least disruptive choice)
- Narrow spectrum(selective) pesticides
- Pesticides which disrupt pest's development or behaviour.

- e.g. pheromones, insect growth regulators, oil sprays
- Timed applications to target pests & diseases

USE OF PESTICIDES IN IPDM

- Spectrum of activity of pesticide (broad/selective)
- Residual activity of pesticides
- Spot/selective vs broad applications
- Timing and frequency of applications

DISRUPTION BY PESTICIDES IS A COMBINATION OF THESE FACTORS

STAGES OF IPDM

- 1. Improved cultural and hygiene practices
 - Monitoring of pests/diseases to better time pesticide applications

- 2. Monitoring of beneficial species, predicting pest and disease populations
 - Selection of "softer" pesticides where possible
 - Spot and target applications of pesticides

STAGES OF IPDM

- 3. Environmental modifications to encourage beneficials, and discourage pests
 - Releases of mass-reared beneficials/ entomopathogens/ competitors/ antagonists

4. Better design of production systems to minimise pest problems

SOME ISSUES TO CONSIDER WITH ORGANIC OLIVE PEST AND DISEASE CONTROL

• Organic pest and disease management should have a strong scientific base, where monitoring plays a key role

• Some acceptable organic inputs may not be registered for commercial use in olives by APVMA (eg. neem, Eco-Oil)

• Copper is a fungicide under threat of removal, with problems with soil microorganisms, copper toxicity

• Some organic pesticides may be environmentally disruptive (broad spectrum, e.g. pyrethrum)

POSSIBLE SYMPTOMS AND CAUSES ON OLIVE TREES

COMMON NAME OF

SYMPTOM	PEST	DISEASE	DISORDER
Leaf yellowing,	Black scale	Rhizoctonia	Tip death
twig & branch	Armoured scales	Verticillium	
UIEDACK	Lace bug	Phytophthora	
		Charcoal rot	
		Wound canker	
		Anthracnose	
		Grey/leaf mould (Cercospora)	
Leaf spots &	Lace bug	Peacock spot	
damage	Weevils	Leaf mould (Cercospora)	
	Grasshoppers		
	L-B apple moth		
	Rutherglen bug		

POSSIBLE SYMPTOMS AND CAUSES ON OLIVE TREES

COMMON NAME OF			
SYMPTOM	PEST	DISEASE	DISORDER
Leaf/branch tip	Olive bud mite		
deformation	Black scale		
Fruit damage & rot	Fruit fly	Anthracnose	Apical end rot (soft
	Armoured scale	Peacock spot	nose)
	Green vegetable	Cercospora (grey	
	bug	mould)	
Flower damage	Thrips (unlikely)	Anthracnose	Dehydration
Stem damage,		Olive knot	Sphaeroblasts
galls & bumps		Crown gall	Oedema

POSSIBLE SYMPTOMS AND CAUSES ON OLIVE TREES

COMMON NAME OF			
SYMPTOM	PEST	DISEASE	DISORDER
Stem/trunk cankers		Phytophthora	Sunburn
& death		Verticillium wilt	
		Wound canker	
		Anthracnose	
Root rotting &	Weevils	Rhizoctonia	Clay panning or
damage		Phytophthora	root plaiting
		Verticillium wilt	Waterlogging
		Charcoal rot	
		Nematodes	
Tree blackening	Black scale	Sooty mould	
	Ants		

FIELD GUIDE (2007)

Available at

https://www.agrifutures.com.au/ publications/field-guide-to-olivepests-diseases-and-disordersin-australia/

Updated edition to be undertaken as part of the current project Field Guide to Olive Pests, Diseases and Disorders in Australia

Robert Spooner-Hart, Len Tesoriero, Barbara Hall

PROJECT IPDM SURVEY

Conducted June 2018 30 Questions in 5 Sections:

- Orchard/grove attributes
- Pests & Diseases in your orchard/grove

- Integrated Pest & Disease Management
- Biosecurity
- Future Extension

130 respondents, >75% of plantings

PEST & DISEASE SURVEY SUMMARY 2018

PEST STATUS	SCORE	KEY STATES	
1. Black scale/ Ants	602	All	
2. Olive lace bug	211	NSW, Qld, WA, Vic (SA, Tas)	
3.Weevil/ Curculio beetle	49	WA, SA, Vic	
4. Others: Grasshoppers, Rutherglen bug, Fruit fly		Qld	

PEST & DISEASE SURVEY SUMMARY 2018

DISEASE STATUS	SCORE	KEY STATES	
1. Anthracnose	267	All except Tas	
2. Peacock spot	139	Tas, NSW,SA, Vic	
3. Dieback	102	Qld, NSW, WA	
4. Phytophthora/ Verticillium wilt	62 60	NSW, Vic, SA, WA	
5. Others: Cercospora/ Grey mould, Olive knot		Vic, NSW, SA	

OTHER PESTS

Birds (cockatoos, parrots, rosellas, starlings)

Kangaroos/wallabies

Rabbits/hares

Deer

IMPORTANCE OF PESTICIDES	% Growers	CAUTION KEEP OUT OF REACH OF CHILDREN READ SAFETY DIRECTIONS BEFORE OPENING OR USING	
Very important- main control	34	Admiral Approved INSECT GROWTH REGULATOR ACTIVE CONSTITUENT: 100 g/L PYRIPROXYFEN SOLVENT: 450 g/L LIQUID HYDROCARBONS	
Quite important	32	GROUP 7C INSECTICIDE For the control of silverleaf whitefly (<i>Bemisia tabaci</i> Biotype B) in cotton, rockmelon and capsicum, the control of silverleaf whitefly (<i>Bemisia tabaci</i> Biotype B) and greenhouse whitefly in tomatoes, and the control of various scale in citrus, mangoes and olives.	
Relatively unimportant	16	IMPORTANT: READ THE ATTACHED LEAFLET BEFORE USING THIS PRODUCT. CONTENTS: 1L, 5L, 20 L, 200 L	
Not used at all	15	SUMITOMO CHEMICAL AUSTRALIA PTY LTD A.B.N. 21 081 096 255 242 Beecroft Road Epping NSW 2121 Tel: (02) 8752 9000 * Registered Trademark of Sumitomo Chemical Co., Japan. Admiral Insect Growth Regulator 7 September 2011 Page 1 of 5	

BIOSECURITY MEASURES

	% Growers
Grove machinery	50.8
wash down facilities	
Farm biosecurity	17.7
preparedness plan	
Read current version	12.3
of Biosecurity Plan	
for Olive industry	

Other issues raised: Olive harvesters Olive processors (for and by) Overseas travellers (both ways)

Biosecurity Plan for the Olive Industry

A shared responsibility between government and industry

Version 2.0 October 2016

Black Scale

Robert Spooner-Hart Andrew Beattie Phuong Sa

BLACK SCALE Saissetia oleae (Coccidae)

- Cosmopolitan, range of hosts, major ones olive and citrus
- One of the 2 most important and the most widespread olive insect pest in Australia
- 2-3 generations/year.
 Overlapping, particularly in Queensland, Nth NSW.
 Behaves differently on olives than on citrus.
- Until recently, limited details of black scale biology on olives in Australia

DAMAGE

Suck sap from leaves (mid-vein) and twigs

Produce honeydew, and associated ants and sooty mould

Heavy infestations cause reduced tree vigour, twig dieback, reduced flowering, even for following season

LIFE STAGES OF BLACK SCALE (Broughton and Beattie)

A Mature black scale female with eggs

B Black scale adults and crawlers (*Scutellista caerulea* on right)

C 3rd instar and female black scales

SCANNING ELECTRON MICROSCOPE IMAGE OF 1ST INSTAR BLACK SCALE (Phuong Sa)

Crawlers are most susceptible stage to hot, dry weather

Black scale population stage composition Southern Queensland

NATURAL ENEMIES

>24 species of beneficial insects, including 22 parasitoid spp. released

15 parasitoid species recorded in association with black scale in Australia. Most common are *Scutellista caerulea* and *Metaphycus* spp.

Attempts made to mass rear and release 2 *Metaphycus* spp. in olive groves in WA, SA and Vic had limited success

M. helvolus (L)

M. bartletti (R)

Scutellista caerulea (egg predator and scale parasite) most common in NSW, Qld, Vic, also present in WA

Other natural enemies include ladybirds and scaleeating caterpillar, but are not generally as effective as parasitoids

Ants in association with black scale are a key factor negatively impacting biological control. Hence, managing ants is an important part of scale management.

For all olive sites in NSW, average parasitism of black scale adults by *Scutellista caerulea* was 63% (range 48–75%), and average number of eggs and crawlers recorded from scales parasitised by a single *S. caerulea* was 89% (range 81–98%) fewer than for unparasitised scales

Larva (grub) of *S. caerulea* among black scale eggs

BLACK SCALE POPULATION SHOWING NATURAL ENEMIES

Scale eating caterpillar

Female scales parasitised by *Scutellista* exit hole

For non-parasitised black scale, as host size increased so did fecundity

Parasitised scales tended to be larger than non-parasitised scales

CHEMICALS REGISTERED OR PERMITTED FOR USE AGAINST BLACK SCALE & ANTS as at 24/10/2018

TARGET PEST	PRODUCT	REGISTERED OR PERMIT	CONDITIONS OF USE
Black scale	Emulsifiable Botanical Oil (ECO-OIL [®] MITICIDE/INSECTICIDE BOTANICAL OIL CONCENTRATE)	Registered	Home garden use only
	Petroleum spray oil (TRUMP [®] , SACOA BIOPEST [®])	Registered	WHP 1 day
	Pyriproxyfen (ADMIRAL [®] , LASCAR [®] , PICTUS ^{®,}	Registered	Apply no more than 2 times /season.
	PYXAL [®] , AC PENRHYN [®])		WHP 7 days
	Fenoxycarb (INSEGAR [®] WG INSECT GROWTH REGULATOR)	PER82184	Until December 2018 Apply no more than 2 times /season
			WHP 60 days
Ants	Pyriproxyfen (DISTANCE PLUS ANT BAIT®)	Registered	No more than 3 times/year
	Chlorpyrifos (various)	PER14575	Until March 2019 Apply no more than 2 times /season. (Ground, Butt treatments only). No WHP, but no grazing

OIL SPRAYS

- Death of susceptible pests mostly related to suffocation (anoxia) movement of oil spiracles into respiratory system of small sessile insects and mites as spray deposits dry
- Also behavioural impacts, such as inhibition of feeding, settling, oviposition are related to oil deposits that may persist for several days or more on plant surfaces

De Ong et al.

CAUTION

KEEP OUT OF REACH OF CHILDREN READ SAFETY DIRECTIONS BEFORE OPENING OR USING

Admiral[®] INSECT GROWTH REGULATOR

ACTIVE CONSTITUENT: 100 g/L PYRIPROXYFEN SOLVENT: 450 g/L LIQUID HYDROCARBONS

For the control of silverleaf whitefly (Bemisia tabaci Biotype B) in cotton, rockmelon and capsicum, the control of silverleaf whitefly (Bemisia tabaci Biotype B) and greenhouse whitefly in tomatoes, and the control of various scale in citrus, mangoes and olives.

IMPORTANT: READ THE ATTACHED LEAFLET BEFORE USING THIS PRODUCT.

CONTENTS: 1L, 5L, 20 L, 200 L

SUMITOMO CHEMICAL AUSTRALIA PTY LTD A.B.N. 21 081 096 255 242 Beecroft Road Epping NSW 2121 Tel: (02) 8752 9000

Registered Trademark of Sumitomo Chemical Co., Japan.

INSECT GROWTH REGULATORS (IGRs)

Some are Juvenile hormone Approved mimics)

Work best at egg hatch-young nymphs, but also pupae-adult, so timing critical. Not systemic

Admiral[®] (pyriproxyfen) (REGISTERED against black scale in olives) Admiral ideally should be applied at the time of crawler release for best effect but can be applied to later scale instars.

Admiral Insect Growth Regulator

7 September 2011

Page 1 of 5

Black scale population stage % composition and spray timing

Trials conducted against crawlers and immature black scale after 2nd spray: field trial Southern Queensland

TREATMENT	MEAN NUMBER SCALE/LEAF	SE
Water	11.12 a	3.41
1% PSO	2.95 b	0.98
1.8% PSO	2.11 b	1.06

Trials conducted against crawlers and immature black scale after 2nd spray: field trial central NSW

TREATMENT	MEAN NUMBER SCALE/LEAF	SE
Water	0.82 a	0.29
1% PSO	0.20 b	0.10
1.8% PSO	0.05 b	0.02

KEY TAKE HOME MESSAGES

- Monitoring for emergence of crawlers is critical for timing of applications of allowable conventional or organic products
- Parasitoids, especially Scutellista caerulea and Metaphycus spp. can play an important role in black scale management, by substantially reducing the number of emerging scale crawlers
- Effective ant control is an important aspect of managing black scale
- Timing and effective spray coverage is critical for successful organic and conventional chemical management

This project has been funded by Hort Innovation using the olive research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit horticulture.com.au

Olive Lace Bug

Robert Spooner-Hart

AUSTRALIAN OLIVE ASSOCIATION 00

OLIVE LACE BUG, *Froggatia olivinia* (Hemiptera: Tingidae)

- Native Australian species
- Original reported host *Notelaea* spp. (native olive)
- Normally 3+ generations/yr
- Recorded in NSW, Qld, Vic, SA,
- WA (2002, 2006), reported in Tas
- 1st generation infestations occur in spring in north first
- 5 nymphal instars

KEY OLB QUESTIONS

- Where do they come from into my grove? How do they sometimes just appear? And what can I do about it?
- How do they spread? How did they get into the state/district? How can we restrict their spread?
- What are their natural enemies and how can I encourage them?
- What are their hosts other than olives?
- What impact does tree health and nutrition have on these pests and their natural enemies?

1st instar 2nd instar 3rd instar

4th instar

5th instar

ADULT

LACE BUG LIFE CYCLE

Female ovipositing near midvein

Hatching nymphs of *F. olivinia*

Newly emerged nymph, egg operculum (O) visible

0

Mixed nymphal instars of *F. olivinia*

4th

5th

1st

4TH AND 5TH INSTAR NYMPHS, EXOSKELETONS AND SECRETIONS

OLB NYMPHAL DEVELOPMENT AT 27°C

OLB develops at different rates on different olive varieties

Total Development Time of OLB Nymphs on Four Olive Varieties and the Native Host

EFFECT OF VARIETY ON OLB MALE AND FEMALE LONGEVITY AT 27°C

Longevity of OLB Male and Females on Four Olive Varieties and the Native Host`

■Male ■Female

- Nymphal stages clustered on undersides of leaves
- Adults less clustered, fly short distances
- First generation is usually discrete, later can have overlapping generations
- Eggs, a few adults and occasional nymphal clusters overwinter

Late autumn adults ready for overwintering

Adults feeding on flowers

OLIVE LACE BUG (OLB) DAMAGE

- All motile stages have piercing and sucking mouthparts
- Mostly feed on undersides of leaves, but adults also found on upper surface

OLB on its natural host *Notolaea longifolia*

- OLB can infest groves
- from forests, and possibly vice versa
- from within a grove
- from nearby groves
- on equipment or people
- from nurseries/plant movement

We are unclear about the extent of these movements in different locations

OLB may have some other hosts in OLEACEAE, e.g. Claret ash (*Fraxinus angustifolia*), green olive tree (*Phyllyrea latifolia*), osmanthus (*Osmanthus fragrans*)

Street olive tree infested with OLB, Busselton WA

WHERE DO INFESTATIONS COME FROM?

- Investigating population genetics of olive lace bug
- The more different they are, the more likely they have come from different origins, and vice-versa
- 25 populations across Australia, including from olives, and non-olive hosts *Notolaea* and Osmanthus were examined
- Comparison of sequences of the mitochondrial cytochrome oxidase I (COI) gene

To answer a number of these questions posed, we used DNA technology from cell mitochondria (mtDNA), the respiration energy powerhouse organelles

Mitochondrion in cell, showing cristae (Transmission Electron Microscopy)

Key to haplotype groups:

A: Hunter Valley, NSW (12) Sydney Basin, NSW (6) Mudgee, NSW (3), Richmond, NSW, O. europea) (2) Richmond, NSW, Osmanthus (3) Canberra, ACT (1) **B**: Sydney Basin (1) **C**: Richmond, NSW, *N. longifolia* (3) Richmond, NSW, O. europea (1) **D**: SE QLD (1) E: SE QLD (1) **F**: SE QLD (1) G: Sydney Basin, NSW (1) Canberra, ACT (1) **H**: SE QLD (1) I: SE QLD (6) Sydney Basin (1) Richmond, NSW, Osmanthus (1) **J**: SE QLD (1) K: Boort, VIC (3) L: SE QLD (3) **M**: SE QLD (1) **N**: SW WA (9) Sydney Basin (2) Canberra, ACT (1) **O**: Sydney Basin (1) P: Coonalpyn, SA (3) **Q**: SE QLD (5) **R**: SE QLD (1)

Our key initial findings indicate:

- a SA population is likely to have originated from NSW Sydney Basin/ Mudgee
- WA populations point towards a likely origin of SE QLD
- More variation between specimens from locations in SE QLD than from NSW and ACT. No variation found between specimens from the Hunter Valley.
- Limited variation between specimens collected from olives and *Notolaea* and *Osmanthus*. Suggests that maternal migration between the three plant hosts is likely to occur when they are in close proximity.

GROVE MANAGEMENT FOR OLB

- 1. Monitoring from spring to after harvest/overwintering esp. for egg hatch
- 2. Infestations can come from infested new trees, from within the grove, from nearby groves, from implements/machinery and bins from other groves/processors
- 3. Stressed trees appear to be more attractive to lace bug: Why? Are they more closely related (size, chemistry) to the native hosts?

4. Young nymphs susceptible to desiccation by hot, dry weather, so opening up healthy trees by pruning may reduce lace bug problems in hot, dry environments

5. Important to target first generation and nymphs as this is the most vulnerable stage for most pesticide (especially organic) options

NON-CHEMICAL OPTIONS FOR OLB

e.g. biological control (green lace wings, spiders, ants, entomopathogens), behavioural control?

Green lacewings (*Mallada signata*) available commercially, used by several growers with some reported success

Some foliar fertilisers (e.g. potassium carbonate) may also suppress OLB populations, but not scientifically validated

CHEMICALS REGISTERED OR PERMITTED FOR USE AGAINST OLIVE LACE BUG as at 24/10/2018

PRODUCT		CONDITIONS OF USE
Clothianidin (SUMITOMO SAMURAI ®)	PER14897	Until March 2023 1 application/season WHP 56 days
Esfenvalerate (SUMI-ALPHA FLEX ^{®,} etc.	PER81949	Until November 2021 WHP 14 days
Dimethoate (various)	PER13999	Until March 2019 Not on table olives Max 4 applications/season WHP 6 weeks
Potassium soap (NATRASOAP)	PER14414	Until Sept 2023 No WHP Organically acceptable input
Pyrethrum (PYGANIC etc.)	PER81870	Until Oct 2019 Max 6 applications /season, rotate with other insecticide group after 2 applics. WHP 1 day. organically acceptable

TAKE HOME MESSAGES

Native species, spreading, difficult to manage organically

Non-chemical management restricting new infestations from nearby forests or groves, including equipment, try to avoid stressing trees

Best to target immature stages in first generation. Some chemical options e.g. pyrethrum, synthetic pyrethroids, neonicotinoids are broad-spectrum and IPM-disruptive, but can be used effectively against adults or mixed populations

Green lacewings may be of some use in suppressing populations

This project has been funded by Hort Innovation using the olive research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit horticulture.com.au

Managing key olive diseases

Len Tesoriero

Peacock Spot Fusicladium oleaginum (Spilocaea oleaginea)

Biology & life cycle

- Infection of leaves mostly in winter & spring (optimum temperature 21°C)
- Requires water for spread and infection
- Infections dormant until autumn lesions develop and conidia (spores) form
- Spread with water splash
- Differential susceptibility of olives varieties

Management options

- Removal or cover dropped leaves with compost
- Pruning to open up canopy to air/sun
- Fungicide applications copper
 – timing
 important (winter & spring)

Cercospora Leaf Mould

Pseudocercospora cladosporioides

Cercosporiosis

- Not well studied slow degenerative disease
- Leaf infection can cause leaf drop
- Cause of fruit infection or secondary invader?
- Requires moisture for infection
- Prefers milder temperatures (similar to peacock spot)
- Controlled by fungicides
- Recent research in Europe *Bacillus subtilis*

Undetermined Leaf Spots

Anthracnose

Colletotrichum acutatum, C. gloeosporioides, C simmondsii

Anthracnose infection of flower

Mummified fruit – source of infection

Colletotrichum spp. biology

- 3 species found on olives in Australia Melbourne University student currently reviewing species – similar biology?
- Spread with water
- Initial fruit infection at flowering, dormant until fruit begin to ripen
- Secondary infection during summer after wet weather

Colletotrichum life cycle

Chemical x variety bioassays

 Fruit sprayed with *C. acutatum* spores +/fungicides and humidified

Percent Anthracnose infection of fruit -14 days post inoculation

Note varietal difference in susceptibility

Management options

- Timing of chemical controls is critical strobilurin fungicides pre-flowering + protectants at veraison (depending on weather)
- No microbial biocontrols registered in Australia for olives but some interesting results from Europe with *Bacillus subtilis*

Soft Nose

a physiological disorder often mistaken for Anthracnose – water stress + Ca deficiency

Fruit Rots

Alternaria sp., Coleophoma oleae and other fungal fruit rots

Botryosphaeria dothidea causes fruit rot in Europe

Verticillium wilt

Defoliating strain in California

Now shown to be in Australia

Verticillium wilt - Moree

What causes lumps and galls on olive stems?

Olive Knot

Pseudomonas savastanoi

Leaf Scorch & Dieback

Olive quick decline syndrome (OQDS)

Photos: David Monteleone, NY Times

Olive quick decline syndrome (OQDS)

Photo: Pier Paolo Cito

Removal of affected trees

Photo: Rex Featires

Spread 20km from front in 2015

Photo: Pier Paolo Cito
Current understanding of OQDS

- OQDS caused by X. fastidiosa subsp. pauca called CoDiRO strain
- = Sequence Type 53 strain known in Costa Rica
- Thought to have arrived in Italy on an ornamental plant
- Spittlebug vector (*Philaenus spumarius*) in Italy
- 25 alternative hosts for CoDiRO strain identified
- CoDiRO strain does not infect grapes or citrus
- CoDiRO strain causes leaf scorch on oleander, cherry & almonds, and infects the weed *Polygona myrtifolia* (myrtle leaf milkwort)
- Leccino variety much less affected

Fungi & bacterial infections are associated with dieback & stem cankers

Here's a few from Australian olives

Opportunistic infections associated with trunk damage

Vascular browning & Stem Cankers Pseudomonas syringae

Bacterial Wilt

Ralstonia solanacearum

Vascular browning

Sunscald/Cold/Frost associations

Fungal Root Rots Fusarium , Pythium, Macrophomina & Rhizoctonia spp.

Summary

- New integrated management options are being developed for key olive diseases overseas – including biological controls
- Many of these options are suitable for organic producers
- These strategies need to be validated in Australia
- There are several biosecurity threats for olives which require vigilance, surveillance & preparedness

This project has been funded by Hort Innovation using the olive research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit horticulture.com.au

WE LOOK FORWARD TO YOUR FURTHER PARTICIPATION IN THE PROJECT

This project has been funded by Hort Innovation using the olive research and development levy and funds from the Australian Government. For more information on the fund and strategic levy investment visit horticulture.com.au