Precision fertigation for improved apple orchard productivity

Nigel Swarts¹, Marcus Hardie¹
Steve Green², Brent Clothier²,
Ian Goodwin³, Eileen Perry³
Dugald Close¹

¹Tasmanian Institute of Agriculture, University of Tasmania
² Institute of Plant and Food Research, New Zealand
³ Department of Economic Development, Jobs, Transport and Resources
Project Overview

Current situation: Guidelines for fertigation are generic and don’t fully consider total N flux and impacts of rates and timing of application

Aim: Optimal N nutrition in apple orchards through fertigation

Major outcome: Protocols for precision fertigation in apple orchards that account for tree uptake, utilisation and fruit quality, crop, leaf and pruning removal and nutrient flux
Trial Establishment

‘Galaxy’ at Lucaston Park Orchards, Tasmania

![Image of orchard with irrigation equipment and people working]

- Delivering N
- Fluxmeters for N leachate
- TDR probes for soil moisture
- Sap Flow for tree water use

Tasmanian Institute of Agriculture – research • development • extension • education • training
Experimental Design

-Irrigation treatments applied when grower irrigates: high (3.9L/hr), medium (2.3L/hr) and low (1.6L/hr)

-Split N treatments applied as Ca(NO$_3$)$_2$ (4 reps per treatment)
-ON
-25%N Pre harvest and 25%N Post harvest
-50% N Pre harvest and 50% N Post Harvest
-50% N Post harvest
-100%N Post harvest.

-Ratios are based on a percentage of annual N application of 60kg/N/ha.

Monthly leaf N sampling

Irrigation starts
Irrigation stops
2015
2014
Post-harvest fertigation
Pruning wood N sampling
Pre-harvest fertigation
Post-harvest fertigation
Harvest

Tasmanian Institute of Agriculture – research • development • extension • education • training
Pre-harvest fertigation significantly increased leaf and fruit N content.
Fruit Quality

• Pre-harvest N fertigation significantly influenced fruit colour (3 indices)
• No significant influence of fertigation on firmness
Orchard water use efficiency

Yearly tree water use
Cumulative water use over a season
Seasonal drainage
‘Eco-efficiency’ of apple orcharding

‘activities that create economic value while reducing ecological impact and resource use’

Average inputs and outputs of apple growing at Lucaston

<table>
<thead>
<tr>
<th>Growing season</th>
<th>Irrigation (L per tree)</th>
<th>Fertigation N (kg/tree)</th>
<th>Yield (kg/tree)</th>
<th>Drainage loss (L/tree)</th>
<th>Nitrate loss (kg-N/tree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-14</td>
<td>1335</td>
<td>0.014</td>
<td>39</td>
<td>424.35</td>
<td>0.015</td>
</tr>
<tr>
<td>2014-15</td>
<td>567</td>
<td>0.014</td>
<td>33</td>
<td>447.75</td>
<td>0.016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Growing season</th>
<th>Water Inputs ε_1 (L/kg fruit)</th>
<th>Water Outputs ε_2 (L/kg fruit)</th>
<th>Nitrogen Inputs ε_3 (kg fruit/kg N)</th>
<th>Nitrogen Outputs ε_4 (kg fruit/kg N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-14</td>
<td>34.2</td>
<td>10.9</td>
<td>2820</td>
<td>2543</td>
</tr>
<tr>
<td>2014-15</td>
<td>17.2</td>
<td>13.6</td>
<td>2386</td>
<td>2056</td>
</tr>
</tbody>
</table>

These simple metrics, on a year by year basis, will enable us to assess the impact of different irrigation and fertigation strategies on the eco-efficiency of orchard production.

Additional factors to consider: season N recycling, crop removal, mineralised N etc.
N15 Trial: Nitrogen recycling

Questions

• What is the importance of N remobilisation versus N uptake by roots for new shoot growth and when does this occur?
• Can the quantity of N stored be influenced by timing and application rate of N fertigation?
• When is uptake most efficient?

Treatments:

• Zero N15 control
• Pre-harvest N15 (60g/tree) only
• Pre-harvest N15 (60g/tree) plus post-harvest N15 (60g/tree)
• Post-harvest N15 (60g/tree) only.
PIPS II: Building on fertigation research

- **Sub-project 1: Building a multi-season N budget for optimised fertiliser management**
 - Use 15N to trace the fate of N over multiple seasons
 - Quantify the relative contributions and timing of all N sources
 - Quantify total N loss above and below ground
 - Determine the uptake of N, P and K under foliar and fertigation treatments and influence on fruit quality

- **Sub-project 2: A nationwide decision support tool to guide on-farm irrigation and nutrient management**
 - Develop a grower/adviser focused decision support tool for irrigation and nutrient management – using SPASMO
 - Will include: point-source application of water and nutrients via a line of drippers or sprinklers, 3D tree-canopy module with leaf processes linked to local microclimate and orchard specifics
Acknowledgements

• Andrew and Matt Griggs as grower collaborators
• Agronomists Peter Morrison, Andrew Hall and Nigel Bartels for industry collaboration
• Dr Sally Bound for advice
• Garth Oliver, Justin Direen and Steve Paterson for technical support
• This project is part of the Apple and Pear industry Productivity Irrigation Pests and Soils (PIPS) flagship program and funded by HIA using the apple and pear industry levy, Voluntary contributions from Plant and Food Research NZ and matched funds from the Australian Government.